Optimal. Leaf size=16 \[ \frac {3}{2}+x+\frac {25 x^2}{(2+\log (x))^8} \]
________________________________________________________________________________________
Rubi [A] time = 0.66, antiderivative size = 13, normalized size of antiderivative = 0.81, number of steps used = 22, number of rules used = 5, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6688, 6742, 2306, 2309, 2178} \begin {gather*} \frac {25 x^2}{(\log (x)+2)^8}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {512-100 x+(2304+50 x) \log (x)+4608 \log ^2(x)+5376 \log ^3(x)+4032 \log ^4(x)+2016 \log ^5(x)+672 \log ^6(x)+144 \log ^7(x)+18 \log ^8(x)+\log ^9(x)}{(2+\log (x))^9} \, dx\\ &=\int \left (1-\frac {200 x}{(2+\log (x))^9}+\frac {50 x}{(2+\log (x))^8}\right ) \, dx\\ &=x+50 \int \frac {x}{(2+\log (x))^8} \, dx-200 \int \frac {x}{(2+\log (x))^9} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {50 x^2}{7 (2+\log (x))^7}+\frac {100}{7} \int \frac {x}{(2+\log (x))^7} \, dx-50 \int \frac {x}{(2+\log (x))^8} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {50 x^2}{21 (2+\log (x))^6}+\frac {100}{21} \int \frac {x}{(2+\log (x))^6} \, dx-\frac {100}{7} \int \frac {x}{(2+\log (x))^7} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {20 x^2}{21 (2+\log (x))^5}+\frac {40}{21} \int \frac {x}{(2+\log (x))^5} \, dx-\frac {100}{21} \int \frac {x}{(2+\log (x))^6} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {10 x^2}{21 (2+\log (x))^4}+\frac {20}{21} \int \frac {x}{(2+\log (x))^4} \, dx-\frac {40}{21} \int \frac {x}{(2+\log (x))^5} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {20 x^2}{63 (2+\log (x))^3}+\frac {40}{63} \int \frac {x}{(2+\log (x))^3} \, dx-\frac {20}{21} \int \frac {x}{(2+\log (x))^4} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {20 x^2}{63 (2+\log (x))^2}-\frac {40}{63} \int \frac {x}{(2+\log (x))^3} \, dx+\frac {40}{63} \int \frac {x}{(2+\log (x))^2} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {40 x^2}{63 (2+\log (x))}-\frac {40}{63} \int \frac {x}{(2+\log (x))^2} \, dx+\frac {80}{63} \int \frac {x}{2+\log (x)} \, dx\\ &=x+\frac {25 x^2}{(2+\log (x))^8}-\frac {80}{63} \int \frac {x}{2+\log (x)} \, dx+\frac {80}{63} \operatorname {Subst}\left (\int \frac {e^{2 x}}{2+x} \, dx,x,\log (x)\right )\\ &=x+\frac {80 \text {Ei}(2 (2+\log (x)))}{63 e^4}+\frac {25 x^2}{(2+\log (x))^8}-\frac {80}{63} \operatorname {Subst}\left (\int \frac {e^{2 x}}{2+x} \, dx,x,\log (x)\right )\\ &=x+\frac {25 x^2}{(2+\log (x))^8}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 13, normalized size = 0.81 \begin {gather*} x+\frac {25 x^2}{(2+\log (x))^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.97, size = 111, normalized size = 6.94 \begin {gather*} \frac {x \log \relax (x)^{8} + 16 \, x \log \relax (x)^{7} + 112 \, x \log \relax (x)^{6} + 448 \, x \log \relax (x)^{5} + 1120 \, x \log \relax (x)^{4} + 1792 \, x \log \relax (x)^{3} + 1792 \, x \log \relax (x)^{2} + 25 \, x^{2} + 1024 \, x \log \relax (x) + 256 \, x}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 542, normalized size = 33.88 \begin {gather*} \frac {x \log \relax (x)^{8}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {16 \, x \log \relax (x)^{7}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {112 \, x \log \relax (x)^{6}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {448 \, x \log \relax (x)^{5}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {1120 \, x \log \relax (x)^{4}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {1792 \, x \log \relax (x)^{3}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {1792 \, x \log \relax (x)^{2}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {25 \, x^{2}}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {1024 \, x \log \relax (x)}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} + \frac {256 \, x}{\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 14, normalized size = 0.88
method | result | size |
risch | \(x +\frac {25 x^{2}}{\left (\ln \relax (x )+2\right )^{8}}\) | \(14\) |
norman | \(\frac {x \ln \relax (x )^{8}+256 x +25 x^{2}+1024 x \ln \relax (x )+1792 x \ln \relax (x )^{2}+1792 x \ln \relax (x )^{3}+1120 x \ln \relax (x )^{4}+448 x \ln \relax (x )^{5}+112 x \ln \relax (x )^{6}+16 x \ln \relax (x )^{7}}{\left (\ln \relax (x )+2\right )^{8}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {630 \, x \log \relax (x)^{8} - 8 \, {\left (25 \, x^{2} - 1261 \, x\right )} \log \relax (x)^{7} - 20 \, {\left (145 \, x^{2} - 3534 \, x\right )} \log \relax (x)^{6} - 4 \, {\left (4525 \, x^{2} - 70756 \, x\right )} \log \relax (x)^{5} - 6 \, {\left (10525 \, x^{2} - 118088 \, x\right )} \log \relax (x)^{4} - 4 \, {\left (33375 \, x^{2} - 283984 \, x\right )} \log \relax (x)^{3} - 50 \, {\left (3451 \, x^{2} - 22816 \, x\right )} \log \relax (x)^{2} - 39625 \, x^{2} - 10 \, {\left (13045 \, x^{2} - 66496 \, x\right )} \log \relax (x) + 221312 \, x}{630 \, {\left (\log \relax (x)^{8} + 16 \, \log \relax (x)^{7} + 112 \, \log \relax (x)^{6} + 448 \, \log \relax (x)^{5} + 1120 \, \log \relax (x)^{4} + 1792 \, \log \relax (x)^{3} + 1792 \, \log \relax (x)^{2} + 1024 \, \log \relax (x) + 256\right )}} - \frac {512 \, e^{\left (-2\right )} E_{9}\left (-\log \relax (x) - 2\right )}{{\left (\log \relax (x) + 2\right )}^{8}} + \frac {100 \, e^{\left (-4\right )} E_{9}\left (-2 \, \log \relax (x) - 4\right )}{{\left (\log \relax (x) + 2\right )}^{8}} + \int \frac {4 \, {\left (50 \, x - 1\right )}}{315 \, {\left (\log \relax (x) + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 337, normalized size = 21.06 \begin {gather*} x-\frac {\frac {25\,x^2\,\ln \relax (x)}{4}-\frac {25\,x^2}{2}}{{\ln \relax (x)}^8+16\,{\ln \relax (x)}^7+112\,{\ln \relax (x)}^6+448\,{\ln \relax (x)}^5+1120\,{\ln \relax (x)}^4+1792\,{\ln \relax (x)}^3+1792\,{\ln \relax (x)}^2+1024\,\ln \relax (x)+256}-\frac {\frac {5\,x^2\,\ln \relax (x)}{21}-\frac {5\,x^2}{42}}{{\ln \relax (x)}^5+10\,{\ln \relax (x)}^4+40\,{\ln \relax (x)}^3+80\,{\ln \relax (x)}^2+80\,\ln \relax (x)+32}-\frac {\frac {5\,x^2\,\ln \relax (x)}{63}+\frac {5\,x^2}{63}}{{\ln \relax (x)}^2+4\,\ln \relax (x)+4}-\frac {\frac {25\,x^2\,\ln \relax (x)}{14}-\frac {75\,x^2}{28}}{{\ln \relax (x)}^7+14\,{\ln \relax (x)}^6+84\,{\ln \relax (x)}^5+280\,{\ln \relax (x)}^4+560\,{\ln \relax (x)}^3+672\,{\ln \relax (x)}^2+448\,\ln \relax (x)+128}-\frac {\frac {10\,x^2\,\ln \relax (x)}{63}+\frac {5\,x^2}{21}}{\ln \relax (x)+2}+\frac {10\,x^2}{63}-\frac {\frac {25\,x^2\,\ln \relax (x)}{42}-\frac {25\,x^2}{42}}{{\ln \relax (x)}^6+12\,{\ln \relax (x)}^5+60\,{\ln \relax (x)}^4+160\,{\ln \relax (x)}^3+240\,{\ln \relax (x)}^2+192\,\ln \relax (x)+64}-\frac {\frac {5\,x^2\,\ln \relax (x)}{63}+\frac {5\,x^2}{126}}{{\ln \relax (x)}^3+6\,{\ln \relax (x)}^2+12\,\ln \relax (x)+8}-\frac {5\,x^2\,\ln \relax (x)}{42\,\left ({\ln \relax (x)}^4+8\,{\ln \relax (x)}^3+24\,{\ln \relax (x)}^2+32\,\ln \relax (x)+16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 58, normalized size = 3.62 \begin {gather*} \frac {25 x^{2}}{\log {\relax (x )}^{8} + 16 \log {\relax (x )}^{7} + 112 \log {\relax (x )}^{6} + 448 \log {\relax (x )}^{5} + 1120 \log {\relax (x )}^{4} + 1792 \log {\relax (x )}^{3} + 1792 \log {\relax (x )}^{2} + 1024 \log {\relax (x )} + 256} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________