Optimal. Leaf size=34 \[ \frac {x^2 \log (x)}{-1-e^{\frac {\frac {3}{4}+\log (x)}{3 \log (x)}}+\frac {\log (2)}{5}} \]
________________________________________________________________________________________
Rubi [F] time = 2.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-100 x+20 x \log (2)) \log (x)+(-200 x+40 x \log (2)) \log ^2(x)+e^{\frac {3+4 \log (x)}{12 \log (x)}} \left (-25 x-100 x \log (x)-200 x \log ^2(x)\right )}{100 e^{\frac {3+4 \log (x)}{6 \log (x)}} \log (x)+e^{\frac {3+4 \log (x)}{12 \log (x)}} (200-40 \log (2)) \log (x)+\left (100-40 \log (2)+4 \log ^2(2)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-100 x+20 x \log (2)) \log (x)+(-200 x+40 x \log (2)) \log ^2(x)+e^{\frac {3+4 \log (x)}{12 \log (x)}} \left (-25 x-100 x \log (x)-200 x \log ^2(x)\right )}{4 \left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)} \, dx\\ &=\frac {1}{4} \int \frac {(-100 x+20 x \log (2)) \log (x)+(-200 x+40 x \log (2)) \log ^2(x)+e^{\frac {3+4 \log (x)}{12 \log (x)}} \left (-25 x-100 x \log (x)-200 x \log ^2(x)\right )}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)} \, dx\\ &=\frac {1}{4} \int \left (\frac {5 x (5-\log (2))}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)}+\frac {5 x \left (-1-4 \log (x)-8 \log ^2(x)\right )}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right ) \log (x)}\right ) \, dx\\ &=\frac {5}{4} \int \frac {x \left (-1-4 \log (x)-8 \log ^2(x)\right )}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right ) \log (x)} \, dx+\frac {1}{4} (5 (5-\log (2))) \int \frac {x}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)} \, dx\\ &=\frac {5}{4} \int \left (\frac {4 x}{-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )}+\frac {x}{\left (-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )\right ) \log (x)}+\frac {8 x \log (x)}{-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )}\right ) \, dx+\frac {1}{4} (5 (5-\log (2))) \int \frac {x}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)} \, dx\\ &=\frac {5}{4} \int \frac {x}{\left (-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )\right ) \log (x)} \, dx+5 \int \frac {x}{-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )} \, dx+10 \int \frac {x \log (x)}{-5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-5 \left (1-\frac {\log (2)}{5}\right )} \, dx+\frac {1}{4} (5 (5-\log (2))) \int \frac {x}{\left (5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}+5 \left (1-\frac {\log (2)}{5}\right )\right )^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 31, normalized size = 0.91 \begin {gather*} -\frac {5 x^2 \log (x)}{5+5 e^{\frac {1}{3}+\frac {1}{4 \log (x)}}-\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 30, normalized size = 0.88 \begin {gather*} -\frac {5 \, x^{2} \log \relax (x)}{5 \, e^{\left (\frac {4 \, \log \relax (x) + 3}{12 \, \log \relax (x)}\right )} - \log \relax (2) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 26, normalized size = 0.76 \begin {gather*} -\frac {5 \, x^{2} \log \relax (x)}{5 \, e^{\left (\frac {1}{4 \, \log \relax (x)} + \frac {1}{3}\right )} - \log \relax (2) + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 29, normalized size = 0.85
method | result | size |
norman | \(\frac {5 x^{2} \ln \relax (x )}{-5+\ln \relax (2)-5 \,{\mathrm e}^{\frac {4 \ln \relax (x )+3}{12 \ln \relax (x )}}}\) | \(29\) |
risch | \(\frac {5 x^{2} \ln \relax (x )}{-5+\ln \relax (2)-5 \,{\mathrm e}^{\frac {4 \ln \relax (x )+3}{12 \ln \relax (x )}}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {5}{4} \, \int \frac {8 \, {\left (x \log \relax (2) - 5 \, x\right )} \log \relax (x)^{2} - 5 \, {\left (8 \, x \log \relax (x)^{2} + 4 \, x \log \relax (x) + x\right )} e^{\left (\frac {4 \, \log \relax (x) + 3}{12 \, \log \relax (x)}\right )} + 4 \, {\left (x \log \relax (2) - 5 \, x\right )} \log \relax (x)}{10 \, {\left (\log \relax (2) - 5\right )} e^{\left (\frac {4 \, \log \relax (x) + 3}{12 \, \log \relax (x)}\right )} \log \relax (x) - {\left (\log \relax (2)^{2} - 10 \, \log \relax (2) + 25\right )} \log \relax (x) - 25 \, e^{\left (\frac {4 \, \log \relax (x) + 3}{6 \, \log \relax (x)}\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {\frac {\ln \relax (x)}{3}+\frac {1}{4}}{\ln \relax (x)}}\,\left (200\,x\,{\ln \relax (x)}^2+100\,x\,\ln \relax (x)+25\,x\right )+{\ln \relax (x)}^2\,\left (200\,x-40\,x\,\ln \relax (2)\right )+\ln \relax (x)\,\left (100\,x-20\,x\,\ln \relax (2)\right )}{\ln \relax (x)\,\left (4\,{\ln \relax (2)}^2-40\,\ln \relax (2)+100\right )+100\,{\mathrm {e}}^{\frac {2\,\left (\frac {\ln \relax (x)}{3}+\frac {1}{4}\right )}{\ln \relax (x)}}\,\ln \relax (x)-{\mathrm {e}}^{\frac {\frac {\ln \relax (x)}{3}+\frac {1}{4}}{\ln \relax (x)}}\,\ln \relax (x)\,\left (40\,\ln \relax (2)-200\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 29, normalized size = 0.85 \begin {gather*} - \frac {5 x^{2} \log {\relax (x )}}{5 e^{\frac {\frac {\log {\relax (x )}}{3} + \frac {1}{4}}{\log {\relax (x )}}} - \log {\relax (2 )} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________