Optimal. Leaf size=26 \[ -4+\frac {-1+e^5}{x^2}+\log \left (4-e^{2 e^x}-x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+e^5 (8-2 x)+2 x+x^3+e^{2 e^x} \left (2-2 e^5+2 e^x x^3\right )}{-4 x^3+e^{2 e^x} x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-4+e^{2 e^x}+x}+\frac {2 e^{2 e^x+x}}{-4+e^{2 e^x}+x}-\frac {8}{x^3 \left (-4+e^{2 e^x}+x\right )}+\frac {2 e^{2 e^x} \left (1-e^5\right )}{x^3 \left (-4+e^{2 e^x}+x\right )}-\frac {2 e^5 (-4+x)}{x^3 \left (-4+e^{2 e^x}+x\right )}+\frac {2}{x^2 \left (-4+e^{2 e^x}+x\right )}\right ) \, dx\\ &=2 \int \frac {e^{2 e^x+x}}{-4+e^{2 e^x}+x} \, dx+2 \int \frac {1}{x^2 \left (-4+e^{2 e^x}+x\right )} \, dx-8 \int \frac {1}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx-\left (2 e^5\right ) \int \frac {-4+x}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx+\left (2 \left (1-e^5\right )\right ) \int \frac {e^{2 e^x}}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx+\int \frac {1}{-4+e^{2 e^x}+x} \, dx\\ &=2 \int \frac {e^{2 e^x+x}}{-4+e^{2 e^x}+x} \, dx+2 \int \frac {1}{x^2 \left (-4+e^{2 e^x}+x\right )} \, dx-8 \int \frac {1}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx-\left (2 e^5\right ) \int \left (-\frac {4}{x^3 \left (-4+e^{2 e^x}+x\right )}+\frac {1}{x^2 \left (-4+e^{2 e^x}+x\right )}\right ) \, dx+\left (2 \left (1-e^5\right )\right ) \int \frac {e^{2 e^x}}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx+\int \frac {1}{-4+e^{2 e^x}+x} \, dx\\ &=2 \int \frac {e^{2 e^x+x}}{-4+e^{2 e^x}+x} \, dx+2 \int \frac {1}{x^2 \left (-4+e^{2 e^x}+x\right )} \, dx-8 \int \frac {1}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx-\left (2 e^5\right ) \int \frac {1}{x^2 \left (-4+e^{2 e^x}+x\right )} \, dx+\left (8 e^5\right ) \int \frac {1}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx+\left (2 \left (1-e^5\right )\right ) \int \frac {e^{2 e^x}}{x^3 \left (-4+e^{2 e^x}+x\right )} \, dx+\int \frac {1}{-4+e^{2 e^x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 25, normalized size = 0.96 \begin {gather*} \frac {-1+e^5}{x^2}+\log \left (4-e^{2 e^x}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.81 \begin {gather*} \frac {x^{2} \log \left (x + e^{\left (2 \, e^{x}\right )} - 4\right ) + e^{5} - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 21, normalized size = 0.81 \begin {gather*} \frac {x^{2} \log \left (x + e^{\left (2 \, e^{x}\right )} - 4\right ) + e^{5} - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.73
method | result | size |
norman | \(\frac {{\mathrm e}^{5}-1}{x^{2}}+\ln \left ({\mathrm e}^{2 \,{\mathrm e}^{x}}+x -4\right )\) | \(19\) |
risch | \(\frac {{\mathrm e}^{5}}{x^{2}}-\frac {1}{x^{2}}+\ln \left ({\mathrm e}^{2 \,{\mathrm e}^{x}}+x -4\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.69 \begin {gather*} \frac {e^{5} - 1}{x^{2}} + \log \left (x + e^{\left (2 \, e^{x}\right )} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 18, normalized size = 0.69 \begin {gather*} \ln \left (x+{\mathrm {e}}^{2\,{\mathrm {e}}^x}-4\right )+\frac {{\mathrm {e}}^5-1}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.85 \begin {gather*} \log {\left (x + e^{2 e^{x}} - 4 \right )} - \frac {2 - 2 e^{5}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________