Optimal. Leaf size=21 \[ \frac {7}{2}+e^{2 e^{-x} x}-3 x \log ^2(x) \]
________________________________________________________________________________________
Rubi [F] time = 0.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x} \left (e^{2 e^{-x} x} (2-2 x)-6 e^x \log (x)-3 e^x \log ^2(x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{-x+2 e^{-x} x} (-1+x)-6 \log (x)-3 \log ^2(x)\right ) \, dx\\ &=-\left (2 \int e^{-x+2 e^{-x} x} (-1+x) \, dx\right )-3 \int \log ^2(x) \, dx-6 \int \log (x) \, dx\\ &=6 x-6 x \log (x)-3 x \log ^2(x)-2 \int e^{-e^{-x} \left (-2+e^x\right ) x} (-1+x) \, dx+6 \int \log (x) \, dx\\ &=-3 x \log ^2(x)-2 \int \left (-e^{-e^{-x} \left (-2+e^x\right ) x}+e^{-e^{-x} \left (-2+e^x\right ) x} x\right ) \, dx\\ &=-3 x \log ^2(x)+2 \int e^{-e^{-x} \left (-2+e^x\right ) x} \, dx-2 \int e^{-e^{-x} \left (-2+e^x\right ) x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 18, normalized size = 0.86 \begin {gather*} e^{2 e^{-x} x}-3 x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.19, size = 16, normalized size = 0.76 \begin {gather*} -3 \, x \log \relax (x)^{2} + e^{\left (2 \, x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 30, normalized size = 1.43 \begin {gather*} -{\left (3 \, x e^{\left (-x\right )} \log \relax (x)^{2} - e^{\left (2 \, x e^{\left (-x\right )} - x\right )}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 17, normalized size = 0.81
method | result | size |
risch | \({\mathrm e}^{2 x \,{\mathrm e}^{-x}}-3 x \ln \relax (x )^{2}\) | \(17\) |
default | \({\mathrm e}^{2 x \,{\mathrm e}^{-x}}-3 x \ln \relax (x )^{2}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.76 \begin {gather*} -3 \, x \log \relax (x)^{2} + e^{\left (2 \, x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.75, size = 16, normalized size = 0.76 \begin {gather*} {\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-x}}-3\,x\,{\ln \relax (x)}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 15, normalized size = 0.71 \begin {gather*} - 3 x \log {\relax (x )}^{2} + e^{2 x e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________