Optimal. Leaf size=21 \[ 3 e^x \left (-9+x-\log \left (2+x^2+2 x^3\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.91, antiderivative size = 28, normalized size of antiderivative = 1.33, number of steps used = 33, number of rules used = 5, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6742, 2194, 2176, 2554, 12} \begin {gather*} -3 e^x \log \left (2 x^3+x^2+2\right )+3 e^x x-27 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {48 e^x}{2+x^2+2 x^3}-\frac {42 e^x x^2}{2+x^2+2 x^3}-\frac {45 e^x x^3}{2+x^2+2 x^3}+\frac {6 e^x x^4}{2+x^2+2 x^3}-\frac {6 e^x \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3}-\frac {3 e^x x^2 \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3}-\frac {6 e^x x^3 \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3}\right ) \, dx\\ &=-\left (3 \int \frac {e^x x^2 \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3} \, dx\right )+6 \int \frac {e^x x^4}{2+x^2+2 x^3} \, dx-6 \int \frac {e^x \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3} \, dx-6 \int \frac {e^x x^3 \log \left (2+x^2+2 x^3\right )}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx-45 \int \frac {e^x x^3}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-3 e^x \log \left (2+x^2+2 x^3\right )+3 \int \frac {2 x (1+3 x) \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+6 \int \left (-\frac {e^x}{4}+\frac {e^x x}{2}+\frac {e^x \left (2-4 x+x^2\right )}{4 \left (2+x^2+2 x^3\right )}\right ) \, dx+6 \int \frac {2 x (1+3 x) \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+6 \int \frac {x (1+3 x) \left (e^x-2 \int \frac {e^x}{2+x^2+2 x^3} \, dx-\int \frac {e^x x^2}{2+x^2+2 x^3} \, dx\right )}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx-45 \int \left (\frac {e^x}{2}-\frac {e^x \left (2+x^2\right )}{2 \left (2+x^2+2 x^3\right )}\right ) \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-3 e^x \log \left (2+x^2+2 x^3\right )-\frac {3 \int e^x \, dx}{2}+\frac {3}{2} \int \frac {e^x \left (2-4 x+x^2\right )}{2+x^2+2 x^3} \, dx+3 \int e^x x \, dx+6 \int \frac {x (1+3 x) \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+6 \int \left (\frac {e^x x (1+3 x)}{2+x^2+2 x^3}-\frac {x (1+3 x) \left (2 \int \frac {e^x}{2+x^2+2 x^3} \, dx+\int \frac {e^x x^2}{2+x^2+2 x^3} \, dx\right )}{2+x^2+2 x^3}\right ) \, dx+12 \int \frac {x (1+3 x) \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-\frac {45 \int e^x \, dx}{2}+\frac {45}{2} \int \frac {e^x \left (2+x^2\right )}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-24 e^x+3 e^x x-3 e^x \log \left (2+x^2+2 x^3\right )+\frac {3}{2} \int \left (\frac {2 e^x}{2+x^2+2 x^3}-\frac {4 e^x x}{2+x^2+2 x^3}+\frac {e^x x^2}{2+x^2+2 x^3}\right ) \, dx-3 \int e^x \, dx+6 \int \frac {e^x x (1+3 x)}{2+x^2+2 x^3} \, dx-6 \int \frac {x (1+3 x) \left (2 \int \frac {e^x}{2+x^2+2 x^3} \, dx+\int \frac {e^x x^2}{2+x^2+2 x^3} \, dx\right )}{2+x^2+2 x^3} \, dx+6 \int \left (\frac {x \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}+\frac {3 x^2 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}\right ) \, dx+12 \int \left (\frac {x \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}+\frac {3 x^2 \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}\right ) \, dx+\frac {45}{2} \int \left (\frac {2 e^x}{2+x^2+2 x^3}+\frac {e^x x^2}{2+x^2+2 x^3}\right ) \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-27 e^x+3 e^x x-3 e^x \log \left (2+x^2+2 x^3\right )+\frac {3}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+3 \int \frac {e^x}{2+x^2+2 x^3} \, dx-6 \int \frac {e^x x}{2+x^2+2 x^3} \, dx+6 \int \left (\frac {e^x x}{2+x^2+2 x^3}+\frac {3 e^x x^2}{2+x^2+2 x^3}\right ) \, dx+6 \int \frac {x \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-6 \int \left (\frac {2 x (1+3 x) \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}+\frac {x (1+3 x) \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}\right ) \, dx+12 \int \frac {x \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+18 \int \frac {x^2 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+\frac {45}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+36 \int \frac {x^2 \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+45 \int \frac {e^x}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-27 e^x+3 e^x x-3 e^x \log \left (2+x^2+2 x^3\right )+\frac {3}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+3 \int \frac {e^x}{2+x^2+2 x^3} \, dx+6 \int \frac {x \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-6 \int \frac {x (1+3 x) \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+12 \int \frac {x \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-12 \int \frac {x (1+3 x) \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+18 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+18 \int \frac {x^2 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+\frac {45}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+36 \int \frac {x^2 \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+45 \int \frac {e^x}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-27 e^x+3 e^x x-3 e^x \log \left (2+x^2+2 x^3\right )+\frac {3}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+3 \int \frac {e^x}{2+x^2+2 x^3} \, dx+6 \int \frac {x \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-6 \int \left (\frac {x \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}+\frac {3 x^2 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}\right ) \, dx+12 \int \frac {x \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-12 \int \left (\frac {x \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}+\frac {3 x^2 \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3}\right ) \, dx+18 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+18 \int \frac {x^2 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx+\frac {45}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+36 \int \frac {x^2 \int \frac {e^x}{2+x^2+2 x^3} \, dx}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+45 \int \frac {e^x}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ &=-27 e^x+3 e^x x-3 e^x \log \left (2+x^2+2 x^3\right )+\frac {3}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+3 \int \frac {e^x}{2+x^2+2 x^3} \, dx+18 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+\frac {45}{2} \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx-42 \int \frac {e^x x^2}{2+x^2+2 x^3} \, dx+45 \int \frac {e^x}{2+x^2+2 x^3} \, dx-48 \int \frac {e^x}{2+x^2+2 x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 21, normalized size = 1.00 \begin {gather*} 3 e^x \left (-9+x-\log \left (2+x^2+2 x^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 23, normalized size = 1.10 \begin {gather*} 3 \, {\left (x - 9\right )} e^{x} - 3 \, e^{x} \log \left (2 \, x^{3} + x^{2} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 25, normalized size = 1.19 \begin {gather*} 3 \, x e^{x} - 3 \, e^{x} \log \left (2 \, x^{3} + x^{2} + 2\right ) - 27 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.14
method | result | size |
risch | \(-3 \,{\mathrm e}^{x} \ln \left (2 x^{3}+x^{2}+2\right )+3 \left (x -9\right ) {\mathrm e}^{x}\) | \(24\) |
norman | \(3 \,{\mathrm e}^{x} x -3 \,{\mathrm e}^{x} \ln \left (2 x^{3}+x^{2}+2\right )-27 \,{\mathrm e}^{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 23, normalized size = 1.10 \begin {gather*} 3 \, {\left (x - 9\right )} e^{x} - 3 \, e^{x} \log \left (2 \, x^{3} + x^{2} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.94, size = 20, normalized size = 0.95 \begin {gather*} -3\,{\mathrm {e}}^x\,\left (\ln \left (2\,x^3+x^2+2\right )-x+9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.34, size = 20, normalized size = 0.95 \begin {gather*} \left (3 x - 3 \log {\left (2 x^{3} + x^{2} + 2 \right )} - 27\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________