Optimal. Leaf size=36 \[ -e^2 \left (x+\left (e^x-x\right ) x^2\right )+3 \left (-x+\frac {10 e^x+x}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 34, normalized size of antiderivative = 0.94, number of steps used = 12, number of rules used = 6, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {14, 2199, 2177, 2178, 2176, 2194} \begin {gather*} e^2 x^3-e^{x+2} x^2-\left (3+e^2\right ) x+\frac {30 e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 \left (1+\frac {e^2}{3}\right )+3 e^2 x^2-\frac {e^x \left (30-30 x+2 e^2 x^3+e^2 x^4\right )}{x^2}\right ) \, dx\\ &=-\left (\left (3+e^2\right ) x\right )+e^2 x^3-\int \frac {e^x \left (30-30 x+2 e^2 x^3+e^2 x^4\right )}{x^2} \, dx\\ &=-\left (\left (3+e^2\right ) x\right )+e^2 x^3-\int \left (\frac {30 e^x}{x^2}-\frac {30 e^x}{x}+2 e^{2+x} x+e^{2+x} x^2\right ) \, dx\\ &=-\left (\left (3+e^2\right ) x\right )+e^2 x^3-2 \int e^{2+x} x \, dx-30 \int \frac {e^x}{x^2} \, dx+30 \int \frac {e^x}{x} \, dx-\int e^{2+x} x^2 \, dx\\ &=\frac {30 e^x}{x}-2 e^{2+x} x-\left (3+e^2\right ) x-e^{2+x} x^2+e^2 x^3+30 \text {Ei}(x)+2 \int e^{2+x} \, dx+2 \int e^{2+x} x \, dx-30 \int \frac {e^x}{x} \, dx\\ &=2 e^{2+x}+\frac {30 e^x}{x}-\left (3+e^2\right ) x-e^{2+x} x^2+e^2 x^3-2 \int e^{2+x} \, dx\\ &=\frac {30 e^x}{x}-\left (3+e^2\right ) x-e^{2+x} x^2+e^2 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 35, normalized size = 0.97 \begin {gather*} \frac {30 e^x}{x}-3 x-e^2 x-e^{2+x} x^2+e^2 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 35, normalized size = 0.97 \begin {gather*} -\frac {3 \, x^{2} - {\left (x^{4} - x^{2}\right )} e^{2} + {\left (x^{3} e^{2} - 30\right )} e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 36, normalized size = 1.00 \begin {gather*} \frac {x^{4} e^{2} - x^{3} e^{\left (x + 2\right )} - x^{2} e^{2} - 3 \, x^{2} + 30 \, e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 0.86
method | result | size |
risch | \(x^{3} {\mathrm e}^{2}-{\mathrm e}^{2} x -3 x -\frac {\left (x^{3} {\mathrm e}^{2}-30\right ) {\mathrm e}^{x}}{x}\) | \(31\) |
norman | \(\frac {x^{4} {\mathrm e}^{2}+\left (-{\mathrm e}^{2}-3\right ) x^{2}-x^{3} {\mathrm e}^{2} {\mathrm e}^{x}+30 \,{\mathrm e}^{x}}{x}\) | \(35\) |
default | \(-3 x +x^{3} {\mathrm e}^{2}+\frac {30 \,{\mathrm e}^{x}}{x}-2 \,{\mathrm e}^{2} \left ({\mathrm e}^{x} x -{\mathrm e}^{x}\right )-{\mathrm e}^{2} \left ({\mathrm e}^{x} x^{2}-2 \,{\mathrm e}^{x} x +2 \,{\mathrm e}^{x}\right )-{\mathrm e}^{2} x\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 59, normalized size = 1.64 \begin {gather*} x^{3} e^{2} - x e^{2} - {\left (x^{2} e^{2} - 2 \, x e^{2} + 2 \, e^{2}\right )} e^{x} - 2 \, {\left (x e^{2} - e^{2}\right )} e^{x} - 3 \, x + 30 \, {\rm Ei}\relax (x) - 30 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.02, size = 30, normalized size = 0.83 \begin {gather*} \frac {30\,{\mathrm {e}}^x}{x}-x^2\,{\mathrm {e}}^{x+2}-x\,\left ({\mathrm {e}}^2+3\right )+x^3\,{\mathrm {e}}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 0.75 \begin {gather*} x^{3} e^{2} + x \left (- e^{2} - 3\right ) + \frac {\left (- x^{3} e^{2} + 30\right ) e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________