Optimal. Leaf size=24 \[ 3+5 e^{-x}+2 x+\frac {3 x}{\log (-x+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-3+3 x)+\left (-3 e^x x+3 e^x \log (x)\right ) \log (-x+\log (x))+\left (5 x-2 e^x x+\left (-5+2 e^x\right ) \log (x)\right ) \log ^2(-x+\log (x))}{\left (-e^x x+e^x \log (x)\right ) \log ^2(-x+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2-5 e^{-x}-\frac {3 (-1+x)}{(x-\log (x)) \log ^2(-x+\log (x))}+\frac {3}{\log (-x+\log (x))}\right ) \, dx\\ &=2 x-3 \int \frac {-1+x}{(x-\log (x)) \log ^2(-x+\log (x))} \, dx+3 \int \frac {1}{\log (-x+\log (x))} \, dx-5 \int e^{-x} \, dx\\ &=5 e^{-x}+2 x-3 \int \left (-\frac {1}{(x-\log (x)) \log ^2(-x+\log (x))}+\frac {x}{(x-\log (x)) \log ^2(-x+\log (x))}\right ) \, dx+3 \int \frac {1}{\log (-x+\log (x))} \, dx\\ &=5 e^{-x}+2 x+3 \int \frac {1}{(x-\log (x)) \log ^2(-x+\log (x))} \, dx-3 \int \frac {x}{(x-\log (x)) \log ^2(-x+\log (x))} \, dx+3 \int \frac {1}{\log (-x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 23, normalized size = 0.96 \begin {gather*} 5 e^{-x}+2 x+\frac {3 x}{\log (-x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 35, normalized size = 1.46 \begin {gather*} \frac {{\left (3 \, x e^{x} + {\left (2 \, x e^{x} + 5\right )} \log \left (-x + \log \relax (x)\right )\right )} e^{\left (-x\right )}}{\log \left (-x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 37, normalized size = 1.54 \begin {gather*} \frac {2 \, x \log \left (-x + \log \relax (x)\right ) + 5 \, e^{\left (-x\right )} \log \left (-x + \log \relax (x)\right ) + 3 \, x}{\log \left (-x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.08
method | result | size |
risch | \(\left (2 \,{\mathrm e}^{x} x +5\right ) {\mathrm e}^{-x}+\frac {3 x}{\ln \left (\ln \relax (x )-x \right )}\) | \(26\) |
default | \(5 \,{\mathrm e}^{-x}+\frac {3 x +2 \ln \left (\ln \relax (x )-x \right ) x}{\ln \left (\ln \relax (x )-x \right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 35, normalized size = 1.46 \begin {gather*} \frac {{\left (3 \, x e^{x} + {\left (2 \, x e^{x} + 5\right )} \log \left (-x + \log \relax (x)\right )\right )} e^{\left (-x\right )}}{\log \left (-x + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 62, normalized size = 2.58 \begin {gather*} 5\,x+5\,{\mathrm {e}}^{-x}-3\,\ln \relax (x)+\frac {3}{x-1}-\frac {3\,x^2}{x-1}-\frac {3\,\ln \relax (x)}{x-1}+\frac {3\,x}{\ln \left (\ln \relax (x)-x\right )}+\frac {3\,x\,\ln \relax (x)}{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 17, normalized size = 0.71 \begin {gather*} 2 x + \frac {3 x}{\log {\left (- x + \log {\relax (x )} \right )}} + 5 e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________