Optimal. Leaf size=30 \[ \frac {2 e^{-\frac {5+\log (x)}{5-x}} \left (-2-e^x+2 x\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 8.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \left (120-44 x-12 x^2+e^x \left (60-62 x+22 x^2-2 x^3\right )+\left (4 x+2 e^x x-4 x^2\right ) \log (x)\right )}{25 x^2-10 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \left (120-44 x-12 x^2+e^x \left (60-62 x+22 x^2-2 x^3\right )+\left (4 x+2 e^x x-4 x^2\right ) \log (x)\right )}{x^2 \left (25-10 x+x^2\right )} \, dx\\ &=\int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \left (120-44 x-12 x^2+e^x \left (60-62 x+22 x^2-2 x^3\right )+\left (4 x+2 e^x x-4 x^2\right ) \log (x)\right )}{(-5+x)^2 x^2} \, dx\\ &=\int \left (-\frac {12 e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2}+\frac {120 e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2 x^2}-\frac {44 e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2 x}-\frac {4 e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2}+\frac {4 e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2 x}-\frac {2 e^{x-\frac {-5-\log (x)}{-5+x}} \left (-30+31 x-11 x^2+x^3-x \log (x)\right )}{(-5+x)^2 x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{x-\frac {-5-\log (x)}{-5+x}} \left (-30+31 x-11 x^2+x^3-x \log (x)\right )}{(-5+x)^2 x^2} \, dx\right )-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2 x} \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-44 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2 x} \, dx+120 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2 x^2} \, dx\\ &=-\left (2 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \left (-30+31 x-11 x^2+x^3-x \log (x)\right )}{(5-x)^2 x^2} \, dx\right )-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+4 \int \left (\frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{5 (-5+x)^2}-\frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{25 (-5+x)}+\frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{25 x}\right ) \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-44 \int \left (\frac {e^{-\frac {-5-\log (x)}{-5+x}}}{5 (-5+x)^2}-\frac {e^{-\frac {-5-\log (x)}{-5+x}}}{25 (-5+x)}+\frac {e^{-\frac {-5-\log (x)}{-5+x}}}{25 x}\right ) \, dx+120 \int \left (\frac {e^{-\frac {-5-\log (x)}{-5+x}}}{25 (-5+x)^2}-\frac {2 e^{-\frac {-5-\log (x)}{-5+x}}}{125 (-5+x)}+\frac {e^{-\frac {-5-\log (x)}{-5+x}}}{25 x^2}+\frac {2 e^{-\frac {-5-\log (x)}{-5+x}}}{125 x}\right ) \, dx\\ &=-\left (\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{-5+x} \, dx\right )+\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{x} \, dx+\frac {4}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx-\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx+\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-2 \int \left (-\frac {11 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2}-\frac {30 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2 x^2}+\frac {31 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2 x}+\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} x}{(-5+x)^2}-\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{(-5+x)^2 x}\right ) \, dx-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x^2} \, dx-\frac {44}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx\\ &=-\left (\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{-5+x} \, dx\right )+\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{x} \, dx+\frac {4}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx-\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx+\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-2 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} x}{(-5+x)^2} \, dx+2 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{(-5+x)^2 x} \, dx-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x^2} \, dx-\frac {44}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+22 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx+60 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2 x^2} \, dx-62 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2 x} \, dx\\ &=-\left (\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{-5+x} \, dx\right )+\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{x} \, dx+\frac {4}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx-\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx+\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-2 \int \left (\frac {5 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2}+\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{-5+x}\right ) \, dx+2 \int \left (\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{5 (-5+x)^2}-\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{25 (-5+x)}+\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{25 x}\right ) \, dx-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x^2} \, dx-\frac {44}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+22 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx+60 \int \left (\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{25 (-5+x)^2}-\frac {2 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{125 (-5+x)}+\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{25 x^2}+\frac {2 e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{125 x}\right ) \, dx-62 \int \left (\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{5 (-5+x)^2}-\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{25 (-5+x)}+\frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{25 x}\right ) \, dx\\ &=-\left (\frac {2}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{-5+x} \, dx\right )+\frac {2}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{x} \, dx-\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{-5+x} \, dx+\frac {4}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{x} \, dx+\frac {2}{5} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {4}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx-\frac {24}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{-5+x} \, dx+\frac {24}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{x} \, dx+\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx-\frac {44}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{-5+x} \, dx+\frac {48}{25} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x} \, dx-2 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{-5+x} \, dx+\frac {12}{5} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {12}{5} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{x^2} \, dx+\frac {62}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{-5+x} \, dx-\frac {62}{25} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{x} \, dx-4 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}} \log (x)}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {24}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{x^2} \, dx-\frac {44}{5} \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-10 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx-12 \int \frac {e^{-\frac {-5-\log (x)}{-5+x}}}{(-5+x)^2} \, dx-\frac {62}{5} \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx+22 \int \frac {e^{\frac {5-5 x+x^2+\log (x)}{-5+x}}}{(-5+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.44, size = 32, normalized size = 1.07 \begin {gather*} -2 e^{\frac {5}{-5+x}} \left (2+e^x-2 x\right ) x^{\frac {6-x}{-5+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 25, normalized size = 0.83 \begin {gather*} \frac {2 \, {\left (2 \, x - e^{x} - 2\right )} e^{\left (\frac {\log \relax (x) + 5}{x - 5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 53, normalized size = 1.77 \begin {gather*} \frac {2 \, {\left (2 \, x e^{\left (\frac {x + \log \relax (x)}{x - 5}\right )} - e^{\left (\frac {x^{2} - 4 \, x + \log \relax (x)}{x - 5}\right )} - 2 \, e^{\left (\frac {x + \log \relax (x)}{x - 5}\right )}\right )} e^{\left (-1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 0.87
method | result | size |
risch | \(\frac {2 \left (2 x -2-{\mathrm e}^{x}\right ) {\mathrm e}^{\frac {5+\ln \relax (x )}{x -5}}}{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 31, normalized size = 1.03 \begin {gather*} \frac {2 \, {\left (2 \, x - e^{x} - 2\right )} e^{\left (\frac {\log \relax (x)}{x - 5} + \frac {5}{x - 5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.58, size = 28, normalized size = 0.93 \begin {gather*} -x^{\frac {1}{x-5}-1}\,{\mathrm {e}}^{\frac {5}{x-5}}\,\left (2\,{\mathrm {e}}^x-4\,x+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.59, size = 22, normalized size = 0.73 \begin {gather*} \frac {\left (4 x - 2 e^{x} - 4\right ) e^{- \frac {- \log {\relax (x )} - 5}{x - 5}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________