Optimal. Leaf size=31 \[ e^5+\frac {1}{e^5 x^2}-\log ^2\left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 28, normalized size of antiderivative = 0.90, number of steps used = 5, number of rules used = 6, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 6688, 14, 6742, 6684, 6686} \begin {gather*} \frac {1}{e^5 x^2}-\log ^2\left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6684
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-4 \log \left (e^{-x/4} x\right )+\left (e^5 \left (4 x^2-x^3\right )-4 e^5 x^2 \log \left (e^{-x/4} x\right )\right ) \log \left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right )}{x^3 \log \left (e^{-x/4} x\right )} \, dx}{2 e^5}\\ &=\frac {\int \frac {-4-\frac {e^5 x^2 \left (-4+x+4 \log \left (e^{-x/4} x\right )\right ) \log \left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right )}{\log \left (e^{-x/4} x\right )}}{x^3} \, dx}{2 e^5}\\ &=\frac {\int \left (-\frac {4}{x^3}-\frac {e^5 \left (-4+x+4 \log \left (e^{-x/4} x\right )\right ) \log \left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right )}{x \log \left (e^{-x/4} x\right )}\right ) \, dx}{2 e^5}\\ &=\frac {1}{e^5 x^2}-\frac {1}{2} \int \frac {\left (-4+x+4 \log \left (e^{-x/4} x\right )\right ) \log \left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right )}{x \log \left (e^{-x/4} x\right )} \, dx\\ &=\frac {1}{e^5 x^2}-\log ^2\left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 0.90 \begin {gather*} \frac {1}{e^5 x^2}-\log ^2\left (\frac {3 x}{\log \left (e^{-x/4} x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 30, normalized size = 0.97 \begin {gather*} -\frac {{\left (x^{2} e^{5} \log \left (\frac {3 \, x}{\log \left (x e^{\left (-\frac {1}{4} \, x\right )}\right )}\right )^{2} - 1\right )} e^{\left (-5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 456, normalized size = 14.71 \begin {gather*} -\frac {{\left (2 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) \mathrm {sgn}\left (x - 4 \, \log \left ({\left | x \right |}\right )\right ) \mathrm {sgn}\relax (x) - 10 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) \mathrm {sgn}\left (x - 4 \, \log \left ({\left | x \right |}\right )\right ) + 4 \, \pi x^{2} \arctan \left (-\frac {2 \, {\left (\pi - \pi \mathrm {sgn}\relax (x)\right )}}{x - 4 \, \log \left ({\left | x \right |}\right )}\right ) e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) \mathrm {sgn}\left (x - 4 \, \log \left ({\left | x \right |}\right )\right ) - 2 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) \mathrm {sgn}\relax (x) - 6 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) - 4 \, \pi x^{2} \arctan \left (-\frac {2 \, {\left (\pi - \pi \mathrm {sgn}\relax (x)\right )}}{x - 4 \, \log \left ({\left | x \right |}\right )}\right ) e^{5} \mathrm {sgn}\left (-2 \, \pi + 2 \, \pi \mathrm {sgn}\relax (x)\right ) + 2 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\left (x - 4 \, \log \left ({\left | x \right |}\right )\right ) + 10 \, \pi ^{2} x^{2} e^{5} \mathrm {sgn}\relax (x) - 4 \, \pi x^{2} \arctan \left (-\frac {2 \, {\left (\pi - \pi \mathrm {sgn}\relax (x)\right )}}{x - 4 \, \log \left ({\left | x \right |}\right )}\right ) e^{5} \mathrm {sgn}\relax (x) - 12 \, \pi ^{2} x^{2} e^{5} + 20 \, \pi x^{2} \arctan \left (-\frac {2 \, {\left (\pi - \pi \mathrm {sgn}\relax (x)\right )}}{x - 4 \, \log \left ({\left | x \right |}\right )}\right ) e^{5} - 4 \, x^{2} \arctan \left (-\frac {2 \, {\left (\pi - \pi \mathrm {sgn}\relax (x)\right )}}{x - 4 \, \log \left ({\left | x \right |}\right )}\right )^{2} e^{5} - 4 \, x^{2} e^{5} \log \left (12\right ) \log \left (-8 \, \pi ^{2} \mathrm {sgn}\relax (x) + 8 \, \pi ^{2} + x^{2} - 8 \, x \log \left ({\left | x \right |}\right ) + 16 \, \log \left ({\left | x \right |}\right )^{2}\right ) + x^{2} e^{5} \log \left (-8 \, \pi ^{2} \mathrm {sgn}\relax (x) + 8 \, \pi ^{2} + x^{2} - 8 \, x \log \left ({\left | x \right |}\right ) + 16 \, \log \left ({\left | x \right |}\right )^{2}\right )^{2} + 8 \, x^{2} e^{5} \log \left (12\right ) \log \left ({\left | x \right |}\right ) - 4 \, x^{2} e^{5} \log \left (-8 \, \pi ^{2} \mathrm {sgn}\relax (x) + 8 \, \pi ^{2} + x^{2} - 8 \, x \log \left ({\left | x \right |}\right ) + 16 \, \log \left ({\left | x \right |}\right )^{2}\right ) \log \left ({\left | x \right |}\right ) + 4 \, x^{2} e^{5} \log \left ({\left | x \right |}\right )^{2} - 4\right )} e^{\left (-5\right )}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-4 x^{2} {\mathrm e}^{5} \ln \left (x \,{\mathrm e}^{-\frac {x}{4}}\right )+\left (-x^{3}+4 x^{2}\right ) {\mathrm e}^{5}\right ) \ln \left (\frac {3 x}{\ln \left (x \,{\mathrm e}^{-\frac {x}{4}}\right )}\right )-4 \ln \left (x \,{\mathrm e}^{-\frac {x}{4}}\right )\right ) {\mathrm e}^{-5}}{2 x^{3} \ln \left (x \,{\mathrm e}^{-\frac {x}{4}}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 71, normalized size = 2.29 \begin {gather*} -{\left (2 \, {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} e^{5} \log \relax (x) + e^{5} \log \relax (x)^{2} + e^{5} \log \left (-x + 4 \, \log \relax (x)\right )^{2} - 2 \, {\left ({\left (\log \relax (3) + 2 \, \log \relax (2)\right )} e^{5} + e^{5} \log \relax (x)\right )} \log \left (-x + 4 \, \log \relax (x)\right ) - \frac {1}{x^{2}}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 23, normalized size = 0.74 \begin {gather*} \frac {{\mathrm {e}}^{-5}}{x^2}-{\ln \left (-\frac {12\,x}{x-4\,\ln \relax (x)}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 22, normalized size = 0.71 \begin {gather*} - \log {\left (\frac {3 x}{\log {\left (x e^{- \frac {x}{4}} \right )}} \right )}^{2} + \frac {1}{x^{2} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________