Optimal. Leaf size=27 \[ e^{\frac {4+x+\frac {x^2}{\log (x)}}{-1+\frac {1}{16 x}}}+x \]
________________________________________________________________________________________
Rubi [F] time = 5.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1-32 x+256 x^2\right ) \log ^2(x)+\exp \left (\frac {-16 x^3+\left (-64 x-16 x^2\right ) \log (x)}{(-1+16 x) \log (x)}\right ) \left (-16 x^2+256 x^3+\left (48 x^2-512 x^3\right ) \log (x)+\left (64+32 x-256 x^2\right ) \log ^2(x)\right )}{\left (1-32 x+256 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (1-32 x+256 x^2\right ) \log ^2(x)+\exp \left (\frac {-16 x^3+\left (-64 x-16 x^2\right ) \log (x)}{(-1+16 x) \log (x)}\right ) \left (-16 x^2+256 x^3+\left (48 x^2-512 x^3\right ) \log (x)+\left (64+32 x-256 x^2\right ) \log ^2(x)\right )}{(-1+16 x)^2 \log ^2(x)} \, dx\\ &=\int \left (1+\frac {16 \exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) \left (-x^2+16 x^3+3 x^2 \log (x)-32 x^3 \log (x)+4 \log ^2(x)+2 x \log ^2(x)-16 x^2 \log ^2(x)\right )}{(1-16 x)^2 \log ^2(x)}\right ) \, dx\\ &=x+16 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) \left (-x^2+16 x^3+3 x^2 \log (x)-32 x^3 \log (x)+4 \log ^2(x)+2 x \log ^2(x)-16 x^2 \log ^2(x)\right )}{(1-16 x)^2 \log ^2(x)} \, dx\\ &=x+16 \int \left (-\frac {2 \exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) \left (-2-x+8 x^2\right )}{(-1+16 x)^2}+\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x^2}{(-1+16 x) \log ^2(x)}-\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x^2 (-3+32 x)}{(-1+16 x)^2 \log (x)}\right ) \, dx\\ &=x+16 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x^2}{(-1+16 x) \log ^2(x)} \, dx-16 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x^2 (-3+32 x)}{(-1+16 x)^2 \log (x)} \, dx-32 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) \left (-2-x+8 x^2\right )}{(-1+16 x)^2} \, dx\\ &=x+16 \int \left (\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{256 \log ^2(x)}+\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x}{16 \log ^2(x)}+\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{256 (-1+16 x) \log ^2(x)}\right ) \, dx-16 \int \left (\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{256 \log (x)}+\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x}{8 \log (x)}-\frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{256 (-1+16 x)^2 \log (x)}\right ) \, dx-32 \int \left (\frac {1}{32} \exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )-\frac {65 \exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{32 (-1+16 x)^2}\right ) \, dx\\ &=x+\frac {1}{16} \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{\log ^2(x)} \, dx+\frac {1}{16} \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{(-1+16 x) \log ^2(x)} \, dx-\frac {1}{16} \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{\log (x)} \, dx+\frac {1}{16} \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{(-1+16 x)^2 \log (x)} \, dx-2 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x}{\log (x)} \, dx+65 \int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right )}{(-1+16 x)^2} \, dx-\int \exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) \, dx+\int \frac {\exp \left (-\frac {16 x \left (x^2+4 \log (x)+x \log (x)\right )}{(-1+16 x) \log (x)}\right ) x}{\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 38, normalized size = 1.41 \begin {gather*} e^{-\frac {65}{16}-x-\frac {65}{16 (-1+16 x)}-\frac {16 x^3}{(-1+16 x) \log (x)}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 30, normalized size = 1.11 \begin {gather*} x + e^{\left (-\frac {16 \, {\left (x^{3} + {\left (x^{2} + 4 \, x\right )} \log \relax (x)\right )}}{{\left (16 \, x - 1\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 32, normalized size = 1.19 \begin {gather*} x + e^{\left (-\frac {16 \, {\left (x^{3} + x^{2} \log \relax (x) + 4 \, x \log \relax (x)\right )}}{16 \, x \log \relax (x) - \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 30, normalized size = 1.11
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {16 x \left (x \ln \relax (x )+x^{2}+4 \ln \relax (x )\right )}{\left (16 x -1\right ) \ln \relax (x )}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 89, normalized size = 3.30 \begin {gather*} {\left (x e^{\left (x + \frac {x^{2}}{\log \relax (x)} + \frac {x}{16 \, \log \relax (x)} + \frac {65}{16 \, {\left (16 \, x - 1\right )}} + \frac {1}{256 \, \log \relax (x)} + \frac {65}{16}\right )} + e^{\left (-\frac {1}{256 \, {\left (16 \, x - 1\right )} \log \relax (x)}\right )}\right )} e^{\left (-x - \frac {x^{2}}{\log \relax (x)} - \frac {x}{16 \, \log \relax (x)} - \frac {65}{16 \, {\left (16 \, x - 1\right )}} - \frac {1}{256 \, \log \relax (x)} - \frac {65}{16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.17, size = 53, normalized size = 1.96 \begin {gather*} x+{\mathrm {e}}^{\frac {64\,x\,\ln \relax (x)}{\ln \relax (x)-16\,x\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {16\,x^2\,\ln \relax (x)}{\ln \relax (x)-16\,x\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {16\,x^3}{\ln \relax (x)-16\,x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 29, normalized size = 1.07 \begin {gather*} x + e^{\frac {- 16 x^{3} + \left (- 16 x^{2} - 64 x\right ) \log {\relax (x )}}{\left (16 x - 1\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________