Optimal. Leaf size=24 \[ \frac {x}{-2-e^x+x (8+\log (\log (-3 (1+2 x))))} \]
________________________________________________________________________________________
Rubi [F] time = 11.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^2+\left (-2-4 x+e^x \left (-1-x+2 x^2\right )\right ) \log (-3-6 x)}{\left (4-24 x+128 x^3+e^{2 x} (1+2 x)+e^x \left (4-8 x-32 x^2\right )\right ) \log (-3-6 x)+\left (-4 x+8 x^2+32 x^3+e^x \left (-2 x-4 x^2\right )\right ) \log (-3-6 x) \log (\log (-3-6 x))+\left (x^2+2 x^3\right ) \log (-3-6 x) \log ^2(\log (-3-6 x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^2+\left (-2+e^x (-1+x)\right ) (1+2 x) \log (-3-6 x)}{(1+2 x) \log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx\\ &=\int \left (-\frac {-1+x}{-2-e^x+8 x+x \log (\log (-3-6 x))}+\frac {x \left (-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))\right )}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx\\ &=-\int \frac {-1+x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx+\int \frac {x \left (-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))\right )}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\\ &=\int \frac {x (-2 x+(1+2 x) \log (-3-6 x) (-10+8 x+(-1+x) \log (\log (-3-6 x))))}{(1+2 x) \log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-\int \left (\frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))}+\frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))}\right ) \, dx\\ &=-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx+\int \left (\frac {-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))}{2 \log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2}-\frac {-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))}{2 (1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))}{\log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-\frac {1}{2} \int \frac {-2 x-10 \log (-3-6 x)-12 x \log (-3-6 x)+16 x^2 \log (-3-6 x)-\log (-3-6 x) \log (\log (-3-6 x))-x \log (-3-6 x) \log (\log (-3-6 x))+2 x^2 \log (-3-6 x) \log (\log (-3-6 x))}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx\\ &=\frac {1}{2} \int \frac {-2 x+(1+2 x) \log (-3-6 x) (-10+8 x+(-1+x) \log (\log (-3-6 x)))}{\log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-\frac {1}{2} \int \frac {-2 x+(1+2 x) \log (-3-6 x) (-10+8 x+(-1+x) \log (\log (-3-6 x)))}{(1+2 x) \log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx\\ &=\frac {1}{2} \int \left (-\frac {10}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2}-\frac {12 x}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {16 x^2}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {2 x}{\log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {\log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {x \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {2 x^2 \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx-\frac {1}{2} \int \left (-\frac {10}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {12 x}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {16 x^2}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {2 x}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {\log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {x \log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {2 x^2 \log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx\\ &=-\left (\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\right )-\frac {1}{2} \int \frac {x \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-5 \int \frac {1}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx+5 \int \frac {1}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-6 \int \frac {x}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+6 \int \frac {x}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+8 \int \frac {x^2}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-8 \int \frac {x^2}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{\log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\int \frac {x}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\int \frac {x^2 \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {x^2 \log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx\\ &=-\left (\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\right )-\frac {1}{2} \int \frac {x \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\frac {1}{2} \int \left (\frac {\log (\log (-3-6 x))}{2 \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}-\frac {\log (\log (-3-6 x))}{2 (1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx-5 \int \frac {1}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx+5 \int \frac {1}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-6 \int \frac {x}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+6 \int \left (\frac {1}{2 \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2}-\frac {1}{2 (1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx+8 \int \frac {x^2}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-8 \int \left (-\frac {1}{4 \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2}+\frac {x}{2 \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {1}{4 (1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{\log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\int \frac {x^2 \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx+\int \left (\frac {1}{2 \log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2}-\frac {1}{2 (1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx-\int \left (-\frac {\log (\log (-3-6 x))}{4 \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {x \log (\log (-3-6 x))}{2 \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}+\frac {\log (\log (-3-6 x))}{4 (1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2}\right ) \, dx\\ &=2 \left (\frac {1}{4} \int \frac {\log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\right )-2 \left (\frac {1}{4} \int \frac {\log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\right )+\frac {1}{2} \int \frac {1}{\log (-3-6 x) \left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-\frac {1}{2} \int \frac {1}{(1+2 x) \log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-2 \left (\frac {1}{2} \int \frac {x \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx\right )+\frac {1}{2} \int \frac {\log (\log (-3-6 x))}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+2 \int \frac {1}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-2 \int \frac {1}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+3 \int \frac {1}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx-3 \int \frac {1}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-4 \int \frac {x}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-5 \int \frac {1}{\left (2+e^x-8 x-x \log (\log (-3-6 x))\right )^2} \, dx+5 \int \frac {1}{(1+2 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-6 \int \frac {x}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+8 \int \frac {x^2}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {1}{2+e^x-8 x-x \log (\log (-3-6 x))} \, dx-\int \frac {x}{\log (-3-6 x) \left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx+\int \frac {x^2 \log (\log (-3-6 x))}{\left (-2-e^x+8 x+x \log (\log (-3-6 x))\right )^2} \, dx-\int \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.69, size = 23, normalized size = 0.96 \begin {gather*} \frac {x}{-2-e^x+8 x+x \log (\log (-3-6 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 22, normalized size = 0.92 \begin {gather*} \frac {x}{x \log \left (\log \left (-6 \, x - 3\right )\right ) + 8 \, x - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.68, size = 22, normalized size = 0.92 \begin {gather*} \frac {x}{x \log \left (\log \left (-6 \, x - 3\right )\right ) + 8 \, x - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.96
method | result | size |
risch | \(\frac {x}{x \ln \left (\ln \left (-6 x -3\right )\right )+8 x -{\mathrm e}^{x}-2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.83, size = 28, normalized size = 1.17 \begin {gather*} \frac {x}{x \log \left (i \, \pi + \log \relax (3) + \log \left (2 \, x + 1\right )\right ) + 8 \, x - e^{x} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 226, normalized size = 9.42 \begin {gather*} \frac {x\,{\left (\ln \left (-6\,x-3\right )+2\,x\,\ln \left (-6\,x-3\right )\right )}^2\,\left (2\,\ln \left (-6\,x-3\right )+4\,x\,\ln \left (-6\,x-3\right )+2\,x^2\right )+x\,{\mathrm {e}}^x\,{\left (\ln \left (-6\,x-3\right )+2\,x\,\ln \left (-6\,x-3\right )\right )}^2\,\left (\ln \left (-6\,x-3\right )+x\,\ln \left (-6\,x-3\right )-2\,x^2\,\ln \left (-6\,x-3\right )\right )}{\ln \left (-6\,x-3\right )\,\left (2\,x+1\right )\,\left (8\,x-{\mathrm {e}}^x+x\,\ln \left (\ln \left (-6\,x-3\right )\right )-2\right )\,\left (2\,{\ln \left (-6\,x-3\right )}^2+8\,x^2\,{\ln \left (-6\,x-3\right )}^2+{\mathrm {e}}^x\,{\ln \left (-6\,x-3\right )}^2+8\,x\,{\ln \left (-6\,x-3\right )}^2+2\,x^2\,\ln \left (-6\,x-3\right )+4\,x^3\,\ln \left (-6\,x-3\right )-4\,x^3\,{\mathrm {e}}^x\,{\ln \left (-6\,x-3\right )}^2+3\,x\,{\mathrm {e}}^x\,{\ln \left (-6\,x-3\right )}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 22, normalized size = 0.92 \begin {gather*} - \frac {x}{- x \log {\left (\log {\left (- 6 x - 3 \right )} \right )} - 8 x + e^{x} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________