Optimal. Leaf size=29 \[ \log \left (\frac {x}{\log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x-2 x \log (4)+2 \log \left (\frac {3}{x}\right )+(4 x+x \log (4)) \log ^2\left (\frac {3}{x}\right )+\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}{\left (-2 x+x \log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x (-8-2 \log (4))+2 \log \left (\frac {3}{x}\right )+(4 x+x \log (4)) \log ^2\left (\frac {3}{x}\right )+\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}{\left (-2 x+x \log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\int \frac {x (-8-2 \log (4))+2 \log \left (\frac {3}{x}\right )+(4 x+x \log (4)) \log ^2\left (\frac {3}{x}\right )+\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}{x \left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\int \frac {-x (-8-2 \log (4))-2 \log \left (\frac {3}{x}\right )-(4 x+x \log (4)) \log ^2\left (\frac {3}{x}\right )-\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-4 x-x \log (4)} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}{x \left (2-\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\int \left (\frac {1}{x}+\frac {8 x \left (1+\frac {\log (2)}{2}\right )-2 \log \left (\frac {3}{x}\right )-4 x \left (1+\frac {\log (2)}{2}\right ) \log ^2\left (\frac {3}{x}\right )}{x \left (2-\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}\right ) \, dx\\ &=\log (x)+\int \frac {8 x \left (1+\frac {\log (2)}{2}\right )-2 \log \left (\frac {3}{x}\right )-4 x \left (1+\frac {\log (2)}{2}\right ) \log ^2\left (\frac {3}{x}\right )}{x \left (2-\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\log (x)+\int \frac {2 \left (4 x \left (1+\frac {\log (2)}{2}\right )-\log \left (\frac {3}{x}\right )-2 x \left (1+\frac {\log (2)}{2}\right ) \log ^2\left (\frac {3}{x}\right )\right )}{x \left (2-\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\log (x)+2 \int \frac {4 x \left (1+\frac {\log (2)}{2}\right )-\log \left (\frac {3}{x}\right )-2 x \left (1+\frac {\log (2)}{2}\right ) \log ^2\left (\frac {3}{x}\right )}{x \left (2-\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ &=\log (x)+2 \int \left (-\frac {2 (2+\log (2))}{\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}+\frac {\log \left (\frac {3}{x}\right )}{x \left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}+\frac {(2+\log (2)) \log ^2\left (\frac {3}{x}\right )}{\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )}\right ) \, dx\\ &=\log (x)+2 \int \frac {\log \left (\frac {3}{x}\right )}{x \left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx+(2 (2+\log (2))) \int \frac {\log ^2\left (\frac {3}{x}\right )}{\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx-(4 (2+\log (2))) \int \frac {1}{\left (-2+\log ^2\left (\frac {3}{x}\right )\right ) \log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 45, normalized size = 1.55 \begin {gather*} \log (x)-\log \left (-4 x-x \log (4)+x (4+\log (4))+\log \left (\frac {1}{6} e^{-x (4+\log (4))} \left (-2+\log ^2\left (\frac {3}{x}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 46, normalized size = 1.59 \begin {gather*} -\log \left (\frac {3}{x}\right ) - \log \left (\log \left (\frac {1}{6} \, e^{\left (-2 \, x \log \relax (2) - 4 \, x\right )} \log \left (\frac {3}{x}\right )^{2} - \frac {1}{3} \, e^{\left (-2 \, x \log \relax (2) - 4 \, x\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 38, normalized size = 1.31 \begin {gather*} -\log \left (2 \, x \log \relax (2) + 4 \, x + \log \relax (3) + \log \relax (2) - \log \left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \relax (x) + \log \relax (x)^{2} - 2\right )\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.64, size = 317, normalized size = 10.93
method | result | size |
risch | \(\ln \relax (x )-\ln \left (\ln \left (4^{x} {\mathrm e}^{4 x}\right )+\frac {i \left (2 \pi \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x} \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right ) \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x}\right ) \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x} \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right )+\pi \,\mathrm {csgn}\left (i \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right ) \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x} \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x}\right ) \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x} \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right )^{2}+\pi \mathrm {csgn}\left (i 4^{-x} {\mathrm e}^{-4 x} \left (-8-8 \ln \relax (3) \ln \relax (x )+4 \ln \relax (x )^{2}+4 \ln \relax (3)^{2}\right )\right )^{3}-6 i \ln \relax (2)-2 i \ln \relax (3)+2 i \ln \left (8+8 \ln \relax (3) \ln \relax (x )-4 \ln \relax (x )^{2}-4 \ln \relax (3)^{2}\right )-2 \pi \right )}{2}\right )\) | \(317\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 39, normalized size = 1.34 \begin {gather*} -\log \left (-2 \, x {\left (\log \relax (2) + 2\right )} - \log \relax (3) - \log \relax (2) + \log \left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \relax (x) + \log \relax (x)^{2} - 2\right )\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.40, size = 31, normalized size = 1.07 \begin {gather*} \ln \relax (x)-\ln \left (\ln \left (\frac {{\mathrm {e}}^{-4\,x}\,\left (\frac {{\ln \left (\frac {3}{x}\right )}^2}{6}-\frac {1}{3}\right )}{2^{2\,x}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 31, normalized size = 1.07 \begin {gather*} \log {\relax (x )} - \log {\left (\log {\left (\left (\frac {\log {\left (\frac {3}{x} \right )}^{2}}{6} - \frac {1}{3}\right ) e^{- 4 x - 2 x \log {\relax (2 )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________