Optimal. Leaf size=24 \[ \left (-e^{16}+(2+2 x)^5\right ) \log \left (\log \left (5-\frac {e}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\frac {e^{17} (1+x)}{x}+\frac {e (-1-x) (2+2 x)^5}{x}+(5 e-25 x) (2+2 x)^5 \log \left (5-\frac {e}{x}\right ) \log \left (\log \left (5-\frac {e}{x}\right )\right )}{\left (-5 x-5 x^2+\frac {e \left (x+x^2\right )}{x}\right ) \log \left (5-\frac {e}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{17}-32 e (1+x)^5+160 (e-5 x) x (1+x)^4 \log \left (5-\frac {e}{x}\right ) \log \left (\log \left (5-\frac {e}{x}\right )\right )}{(e-5 x) x \log \left (5-\frac {e}{x}\right )} \, dx\\ &=\int \left (\frac {e \left (-32 \left (1-\frac {e^{16}}{32}\right )-160 x-320 x^2-320 x^3-160 x^4-32 x^5\right )}{(e-5 x) x \log \left (5-\frac {e}{x}\right )}+160 (1+x)^4 \log \left (\log \left (5-\frac {e}{x}\right )\right )\right ) \, dx\\ &=160 \int (1+x)^4 \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+e \int \frac {-32 \left (1-\frac {e^{16}}{32}\right )-160 x-320 x^2-320 x^3-160 x^4-32 x^5}{(e-5 x) x \log \left (5-\frac {e}{x}\right )} \, dx\\ &=160 \int \left (\log \left (\log \left (5-\frac {e}{x}\right )\right )+4 x \log \left (\log \left (5-\frac {e}{x}\right )\right )+6 x^2 \log \left (\log \left (5-\frac {e}{x}\right )\right )+4 x^3 \log \left (\log \left (5-\frac {e}{x}\right )\right )+x^4 \log \left (\log \left (5-\frac {e}{x}\right )\right )\right ) \, dx+e \int \frac {-32 \left (1-\frac {e^{16}}{32}\right )-160 x-320 x^2-320 x^3-160 x^4-32 x^5}{(e-5 x) x \log \left (\frac {-e+5 x}{x}\right )} \, dx\\ &=160 \int \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+160 \int x^4 \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+640 \int x \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+640 \int x^3 \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+960 \int x^2 \log \left (\log \left (5-\frac {e}{x}\right )\right ) \, dx+e \int \frac {-32 \left (1-\frac {e^{16}}{32}\right )-160 x-320 x^2-320 x^3-160 x^4-32 x^5}{(e-5 x) x \log \left (\frac {-e+5 x}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.09, size = 24, normalized size = 1.00 \begin {gather*} \left (-e^{16}+32 (1+x)^5\right ) \log \left (\log \left (5-\frac {e}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 44, normalized size = 1.83 \begin {gather*} {\left (32 \, x^{5} + 160 \, x^{4} + 320 \, x^{3} + 320 \, x^{2} + 160 \, x - e^{16} + 32\right )} \log \left (\log \left (\frac {5 \, x - e}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 135, normalized size = 5.62 \begin {gather*} 32 \, x^{5} \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) + 160 \, x^{4} \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) + 320 \, x^{3} \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) + 320 \, x^{2} \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) + 160 \, x \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) - e^{16} \log \left (-\log \left (5 \, x - e\right ) + \log \relax (x)\right ) + 32 \, \log \left (-\log \left (5 \, x - e\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.13, size = 0, normalized size = 0.00 \[\int \frac {\left (5 x \,{\mathrm e}^{1-\ln \relax (x )}-25 x \right ) \left (2 x +2\right )^{5} \ln \left (-{\mathrm e}^{1-\ln \relax (x )}+5\right ) \ln \left (\ln \left (-{\mathrm e}^{1-\ln \relax (x )}+5\right )\right )+\left (-x -1\right ) {\mathrm e}^{1-\ln \relax (x )} \left (2 x +2\right )^{5}+\left (x +1\right ) {\mathrm e}^{16} {\mathrm e}^{1-\ln \relax (x )}}{\left (\left (x^{2}+x \right ) {\mathrm e}^{1-\ln \relax (x )}-5 x^{2}-5 x \right ) \ln \left (-{\mathrm e}^{1-\ln \relax (x )}+5\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 45, normalized size = 1.88 \begin {gather*} {\left (32 \, x^{5} + 160 \, x^{4} + 320 \, x^{3} + 320 \, x^{2} + 160 \, x - e^{16} + 32\right )} \log \left (\log \left (5 \, x - e\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.72, size = 41, normalized size = 1.71 \begin {gather*} \ln \left (\ln \left (5-\frac {\mathrm {e}}{x}\right )\right )\,\left (32\,x^5+160\,x^4+320\,x^3+320\,x^2+160\,x-{\mathrm {e}}^{16}+32\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.52, size = 110, normalized size = 4.58 \begin {gather*} \left (32 x^{5} + 160 x^{4} + 320 x^{3} + 320 x^{2} + 160 x - \frac {32 e^{2}}{15} - \frac {16 e}{3} - \frac {48 e^{3}}{125} - \frac {64 e^{4}}{1875} - \frac {16 e^{5}}{13125}\right ) \log {\left (\log {\left (5 - \frac {e}{x} \right )} \right )} - \frac {\left (-420000 - 28000 e^{2} - 70000 e - 5040 e^{3} - 448 e^{4} - 16 e^{5} + 13125 e^{16}\right ) \log {\left (\log {\left (5 - \frac {e}{x} \right )} \right )}}{13125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________