Optimal. Leaf size=25 \[ e^{e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) \left (3-e^x+2 x+\log \left (2 e^{2 x} x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right )-\exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+2 x+x \log \left (2 e^{2 x} x^2\right )\right )+2 \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) x+\exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) \log \left (2 e^{2 x} x^2\right )\right ) \, dx\\ &=2 \int \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) x \, dx+3 \int \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) \, dx-\int \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+2 x+x \log \left (2 e^{2 x} x^2\right )\right ) \, dx+\int \exp \left (1-e^x+e^{1-e^x+x+x \log \left (2 e^{2 x} x^2\right )}+x+x \log \left (2 e^{2 x} x^2\right )\right ) \log \left (2 e^{2 x} x^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.38, size = 27, normalized size = 1.08 \begin {gather*} e^{2^x e^{1-e^x+x} \left (e^{2 x} x^2\right )^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 21, normalized size = 0.84 \begin {gather*} e^{\left (e^{\left (x \log \left (2 \, x^{2} e^{\left (2 \, x\right )}\right ) + x - e^{x} + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (2 \, x - e^{x} + \log \left (2 \, x^{2} e^{\left (2 \, x\right )}\right ) + 3\right )} e^{\left (x \log \left (2 \, x^{2} e^{\left (2 \, x\right )}\right ) + x + e^{\left (x \log \left (2 \, x^{2} e^{\left (2 \, x\right )}\right ) + x - e^{x} + 1\right )} - e^{x} + 1\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.47, size = 234, normalized size = 9.36
method | result | size |
risch | \({\mathrm e}^{2^{x} x^{2 x} \left ({\mathrm e}^{x}\right )^{2 x} {\mathrm e}^{1-\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-\frac {i x \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+i x \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-\frac {i x \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )}{2}+i x \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\frac {i x \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}}{2}+\frac {i x \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}}{2}-\frac {i x \pi \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{3}}{2}+\frac {i x \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{2 x}\right )^{2}}{2}-{\mathrm e}^{x}+x}}\) | \(234\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 23, normalized size = 0.92 \begin {gather*} e^{\left (e^{\left (2 \, x^{2} + x \log \relax (2) + 2 \, x \log \relax (x) + x - e^{x} + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 24, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{\mathrm {e}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{-{\mathrm {e}}^x}\,{\mathrm {e}}^x\,{\left (2\,x^2\right )}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________