Optimal. Leaf size=19 \[ -1+e^2+\log ^2\left (3+\frac {1}{x}-x+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 14.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-2-2 x^2+4 x^3\right ) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{x+3 x^2-x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{x}+\frac {2 \left (3-2 x+3 x^2\right ) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{x} \, dx\right )+2 \int \frac {\left (3-2 x+3 x^2\right ) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3} \, dx\\ &=-2 \log (x) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )+2 \int \frac {x \left (\frac {3-2 x+3 x^2}{x}-\frac {1+3 x-x^2+x^3}{x^2}\right ) \log (x)}{1+3 x-x^2+x^3} \, dx+2 \int \left (\frac {3 \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3}-\frac {2 x \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3}+\frac {3 x^2 \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3}\right ) \, dx\\ &=-2 \log (x) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )+2 \int \left (-\frac {\log (x)}{x}+\frac {\left (3-2 x+3 x^2\right ) \log (x)}{1+3 x-x^2+x^3}\right ) \, dx-4 \int \frac {x \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {\log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {x^2 \log \left (\frac {1+3 x-x^2+x^3}{x}\right )}{1+3 x-x^2+x^3} \, dx\\ &=-2 \log (x) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )-2 \int \frac {\log (x)}{x} \, dx+2 \int \frac {\left (3-2 x+3 x^2\right ) \log (x)}{1+3 x-x^2+x^3} \, dx-4 \int \frac {x \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {\log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {x^2 \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx\\ &=-\log ^2(x)-2 \log (x) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )+2 \int \left (\frac {3 \log (x)}{1+3 x-x^2+x^3}-\frac {2 x \log (x)}{1+3 x-x^2+x^3}+\frac {3 x^2 \log (x)}{1+3 x-x^2+x^3}\right ) \, dx-4 \int \frac {x \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {\log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {x^2 \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx\\ &=-\log ^2(x)-2 \log (x) \log \left (\frac {1+3 x-x^2+x^3}{x}\right )-4 \int \frac {x \log (x)}{1+3 x-x^2+x^3} \, dx-4 \int \frac {x \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {\log (x)}{1+3 x-x^2+x^3} \, dx+6 \int \frac {x^2 \log (x)}{1+3 x-x^2+x^3} \, dx+6 \int \frac {\log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx+6 \int \frac {x^2 \log \left (3+\frac {1}{x}-x+x^2\right )}{1+3 x-x^2+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 14, normalized size = 0.74 \begin {gather*} \log ^2\left (3+\frac {1}{x}-x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 20, normalized size = 1.05 \begin {gather*} \log \left (\frac {x^{3} - x^{2} + 3 \, x + 1}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, x^{3} - x^{2} - 1\right )} \log \left (\frac {x^{3} - x^{2} + 3 \, x + 1}{x}\right )}{x^{4} - x^{3} + 3 \, x^{2} + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 21, normalized size = 1.11
method | result | size |
norman | \(\ln \left (\frac {x^{3}-x^{2}+3 x +1}{x}\right )^{2}\) | \(21\) |
default | \(-2 \ln \relax (x ) \ln \left (\frac {x^{3}-x^{2}+3 x +1}{x}\right )-\ln \relax (x )^{2}+2 \ln \relax (x ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =1\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =1\right )}\right )+2 \dilog \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =1\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =1\right )}\right )+2 \ln \relax (x ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =2\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =2\right )}\right )+2 \dilog \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =2\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =2\right )}\right )+2 \ln \relax (x ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =3\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =3\right )}\right )+2 \dilog \left (\frac {\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =3\right )-x}{\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1, \mathit {index} =3\right )}\right )+2 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (\textit {\_Z}^{3}-\textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{\sum }\left (\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x^{3}-x^{2}+3 x +1}{x}\right )-\frac {\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right )^{2}}{2}+\dilog \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )+\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {x}{\underline {\hspace {1.25 ex}}\alpha }\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {-\underline {\hspace {1.25 ex}}\alpha +1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}-2 x}{-3 \underline {\hspace {1.25 ex}}\alpha +1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}}\right )-\ln \left (x -\underline {\hspace {1.25 ex}}\alpha \right ) \ln \left (\frac {\underline {\hspace {1.25 ex}}\alpha -1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}+2 x}{3 \underline {\hspace {1.25 ex}}\alpha -1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}}\right )-\dilog \left (\frac {-\underline {\hspace {1.25 ex}}\alpha +1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}-2 x}{-3 \underline {\hspace {1.25 ex}}\alpha +1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}}\right )-\dilog \left (\frac {\underline {\hspace {1.25 ex}}\alpha -1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}+2 x}{3 \underline {\hspace {1.25 ex}}\alpha -1+\sqrt {-3 \underline {\hspace {1.25 ex}}\alpha ^{2}+2 \underline {\hspace {1.25 ex}}\alpha -11}}\right )\right )\right )\) | \(554\) |
risch | \(\text {Expression too large to display}\) | \(5020\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 82, normalized size = 4.32 \begin {gather*} -\log \left (x^{3} - x^{2} + 3 \, x + 1\right )^{2} + 2 \, \log \left (x^{3} - x^{2} + 3 \, x + 1\right ) \log \relax (x) - \log \relax (x)^{2} + 2 \, {\left (\log \left (x^{3} - x^{2} + 3 \, x + 1\right ) - \log \relax (x)\right )} \log \left (\frac {x^{3} - x^{2} + 3 \, x + 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.24, size = 14, normalized size = 0.74 \begin {gather*} {\ln \left (\frac {1}{x}-x+x^2+3\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.79 \begin {gather*} \log {\left (\frac {x^{3} - x^{2} + 3 x + 1}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________