Optimal. Leaf size=22 \[ e^{e^{5-x}} \left (-4+\log ^2\left (e^x-x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{5-x}} \left (4 e^5-4 e^{5-x} x\right )+e^{e^{5-x}} \left (-2+2 e^x\right ) \log \left (e^x-x\right )+e^{e^{5-x}} \left (-e^5+e^{5-x} x\right ) \log ^2\left (e^x-x\right )}{e^x-x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{5-x}-x} \left (4 e^{5+x}-4 e^5 x-2 e^x \log \left (e^x-x\right )+2 e^{2 x} \log \left (e^x-x\right )-e^{5+x} \log ^2\left (e^x-x\right )+e^5 x \log ^2\left (e^x-x\right )\right )}{e^x-x} \, dx\\ &=\int \frac {e^{e^{5-x}-x} \left (4 e^5 \left (e^x-x\right )+2 e^x \left (-1+e^x\right ) \log \left (e^x-x\right )-e^5 \left (e^x-x\right ) \log ^2\left (e^x-x\right )\right )}{e^x-x} \, dx\\ &=\int \left (4 e^{5+e^{5-x}-x}+2 e^{e^{5-x}} \log \left (e^x-x\right )-2 e^{e^{5-x}-x} \log \left (e^x-x\right )+2 e^{e^{5-x}-x} x \log \left (e^x-x\right )+\frac {2 e^{e^{5-x}-x} (-1+x) x \log \left (e^x-x\right )}{e^x-x}-e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right )\right ) \, dx\\ &=2 \int e^{e^{5-x}} \log \left (e^x-x\right ) \, dx-2 \int e^{e^{5-x}-x} \log \left (e^x-x\right ) \, dx+2 \int e^{e^{5-x}-x} x \log \left (e^x-x\right ) \, dx+2 \int \frac {e^{e^{5-x}-x} (-1+x) x \log \left (e^x-x\right )}{e^x-x} \, dx+4 \int e^{5+e^{5-x}-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )-2 \int \frac {e^{-5+e^{5-x}} \left (-1+e^x\right )}{e^x-x} \, dx+2 \int \frac {\left (-1+e^x\right ) \text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx-2 \int \frac {\left (-1+e^x\right ) \int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx-2 \int \frac {\left (-1+e^x\right ) \left (-\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right )}{e^x-x} \, dx-4 \operatorname {Subst}\left (\int e^{5+e^5 x} \, dx,x,e^{-x}\right )+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )-2 \int \left (e^{-5+e^{5-x}}+\frac {e^{-5+e^{5-x}} (-1+x)}{e^x-x}\right ) \, dx+2 \int \left (\text {Ei}\left (e^{5-x}\right )+\frac {(-1+x) \text {Ei}\left (e^{5-x}\right )}{e^x-x}\right ) \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx+\frac {(-1+x) \int e^{e^{5-x}-x} x \, dx}{e^x-x}\right ) \, dx-2 \int \left (-\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\frac {(-1+x) \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right )}{e^x-x}+\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )-2 \int e^{-5+e^{5-x}} \, dx-2 \int \frac {e^{-5+e^{5-x}} (-1+x)}{e^x-x} \, dx+2 \int \text {Ei}\left (e^{5-x}\right ) \, dx+2 \int \frac {(-1+x) \text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx\right ) \, dx-2 \int \frac {(-1+x) \int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx+2 \int \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx\right ) \, dx+2 \int \frac {(-1+x) \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right )}{e^x-x} \, dx-2 \int \left (\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )-2 \int \left (-\frac {e^{-5+e^{5-x}}}{e^x-x}+\frac {e^{-5+e^{5-x}} x}{e^x-x}\right ) \, dx+2 \int \left (-\frac {\text {Ei}\left (e^{5-x}\right )}{e^x-x}+\frac {x \text {Ei}\left (e^{5-x}\right )}{e^x-x}\right ) \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx\right ) \, dx-2 \int \left (-\frac {\int e^{e^{5-x}-x} x \, dx}{e^x-x}+\frac {x \int e^{e^{5-x}-x} x \, dx}{e^x-x}\right ) \, dx+2 \int \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx\right ) \, dx+2 \int \left (-\frac {\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x}+\frac {x \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right )}{e^x-x}\right ) \, dx-2 \int \left (\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx+2 \operatorname {Subst}\left (\int \frac {e^{-5+x}}{x} \, dx,x,e^{5-x}\right )-2 \operatorname {Subst}\left (\int \frac {\text {Ei}(x)}{x} \, dx,x,e^{5-x}\right )+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+\frac {2 \text {Ei}\left (e^{5-x}\right )}{e^5}-2 \left (E_1\left (-e^{5-x}\right )+\text {Ei}\left (e^{5-x}\right )\right ) \log \left (e^{5-x}\right )+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )+2 \int \frac {e^{-5+e^{5-x}}}{e^x-x} \, dx-2 \int \frac {e^{-5+e^{5-x}} x}{e^x-x} \, dx-2 \int \frac {\text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx+2 \int \frac {x \text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx\right ) \, dx+2 \int \frac {\int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx-2 \int \frac {x \int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx+2 \int \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx\right ) \, dx-2 \int \frac {\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x} \, dx+2 \int \frac {x \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx-\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right )}{e^x-x} \, dx-2 \int \left (\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx+2 \operatorname {Subst}\left (\int \frac {E_1(-x)}{x} \, dx,x,e^{5-x}\right )+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+2 \gamma x+\frac {2 \text {Ei}\left (e^{5-x}\right )}{e^5}-2 e^{5-x} \, _3F_3\left (1,1,1;2,2,2;e^{5-x}\right )-\log ^2\left (-e^{5-x}\right )-2 \left (E_1\left (-e^{5-x}\right )+\text {Ei}\left (e^{5-x}\right )\right ) \log \left (e^{5-x}\right )+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )+2 \int \frac {e^{-5+e^{5-x}}}{e^x-x} \, dx-2 \int \frac {e^{-5+e^{5-x}} x}{e^x-x} \, dx-2 \int \frac {\text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx+2 \int \frac {x \text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx\right ) \, dx+2 \int \frac {\int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx-2 \int \frac {x \int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx+2 \int \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx\right ) \, dx-2 \int \left (\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx-2 \int \left (\frac {\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx}{e^x-x}-\frac {\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x}\right ) \, dx+2 \int \left (\frac {x \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx}{e^x-x}-\frac {x \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x}\right ) \, dx+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ &=-4 e^{e^{5-x}}+2 \gamma x+\frac {2 \text {Ei}\left (e^{5-x}\right )}{e^5}-2 e^{5-x} \, _3F_3\left (1,1,1;2,2,2;e^{5-x}\right )-\log ^2\left (-e^{5-x}\right )-2 \left (E_1\left (-e^{5-x}\right )+\text {Ei}\left (e^{5-x}\right )\right ) \log \left (e^{5-x}\right )+2 e^{-5+e^{5-x}} \log \left (e^x-x\right )-2 \text {Ei}\left (e^{5-x}\right ) \log \left (e^x-x\right )+2 \int \frac {e^{-5+e^{5-x}}}{e^x-x} \, dx-2 \int \frac {e^{-5+e^{5-x}} x}{e^x-x} \, dx-2 \int \frac {\text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx+2 \int \frac {x \text {Ei}\left (e^{5-x}\right )}{e^x-x} \, dx-2 \int \left (\int e^{e^{5-x}-x} x \, dx\right ) \, dx+2 \int \frac {\int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx-2 \int \frac {x \int e^{e^{5-x}-x} x \, dx}{e^x-x} \, dx+2 \int \left (\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx\right ) \, dx-2 \int \frac {\int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx}{e^x-x} \, dx+2 \int \frac {x \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx}{e^x-x} \, dx-2 \int \left (\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx\right ) \, dx+2 \int \frac {\int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x} \, dx-2 \int \frac {x \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int e^{e^{5-x}-x} x \, dx-\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x}{e^x-x} \, dx+\left (2 \log \left (e^x-x\right )\right ) \int \frac {e^{e^{5-x}-x} x^2}{e^x-x} \, dx-\int e^{5+e^{5-x}-x} \log ^2\left (e^x-x\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.63, size = 22, normalized size = 1.00 \begin {gather*} e^{e^{5-x}} \left (-4+\log ^2\left (e^x-x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 27, normalized size = 1.23 \begin {gather*} e^{\left (e^{\left (-x + 5\right )}\right )} \log \left (-x + e^{x}\right )^{2} - 4 \, e^{\left (e^{\left (-x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x e^{\left (-x + 5\right )} - e^{5}\right )} e^{\left (e^{\left (-x + 5\right )}\right )} \log \left (-x + e^{x}\right )^{2} + 2 \, {\left (e^{x} - 1\right )} e^{\left (e^{\left (-x + 5\right )}\right )} \log \left (-x + e^{x}\right ) - 4 \, {\left (x e^{\left (-x + 5\right )} - e^{5}\right )} e^{\left (e^{\left (-x + 5\right )}\right )}}{x - e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 1.27
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{5-x}} \ln \left ({\mathrm e}^{x}-x \right )^{2}-4 \,{\mathrm e}^{{\mathrm e}^{5-x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 19, normalized size = 0.86 \begin {gather*} {\left (\log \left (-x + e^{x}\right )^{2} - 4\right )} e^{\left (e^{\left (-x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} -\int \frac {-{\mathrm {e}}^{{\mathrm {e}}^{5-x}}\,\left ({\mathrm {e}}^5-x\,{\mathrm {e}}^{5-x}\right )\,{\ln \left ({\mathrm {e}}^x-x\right )}^2+{\mathrm {e}}^{{\mathrm {e}}^{5-x}}\,\left (2\,{\mathrm {e}}^x-2\right )\,\ln \left ({\mathrm {e}}^x-x\right )+{\mathrm {e}}^{{\mathrm {e}}^{5-x}}\,\left (4\,{\mathrm {e}}^5-4\,x\,{\mathrm {e}}^{5-x}\right )}{x-{\mathrm {e}}^x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________