Optimal. Leaf size=16 \[ \frac {1}{4 \left (1+\log \left (3 (5+x)^2\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6688, 12, 2390, 2302, 30} \begin {gather*} \frac {1}{4 \left (\log \left (3 (x+5)^2\right )+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\int \frac {1}{2 (5+x) \left (1+\log \left (3 (5+x)^2\right )\right )^2} \, dx\\ &=-\left (\frac {1}{2} \int \frac {1}{(5+x) \left (1+\log \left (3 (5+x)^2\right )\right )^2} \, dx\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \left (1+\log \left (3 x^2\right )\right )^2} \, dx,x,5+x\right )\right )\\ &=-\left (\frac {1}{4} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,1+\log \left (3 (5+x)^2\right )\right )\right )\\ &=\frac {1}{4 \left (1+\log \left (3 (5+x)^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 1.00 \begin {gather*} \frac {1}{4 \left (1+\log \left (3 (5+x)^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 17, normalized size = 1.06 \begin {gather*} \frac {1}{4 \, {\left (\log \left (3 \, x^{2} + 30 \, x + 75\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 17, normalized size = 1.06 \begin {gather*} \frac {1}{4 \, {\left (\log \left (3 \, x^{2} + 30 \, x + 75\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 1.12
method | result | size |
norman | \(\frac {1}{4 \ln \left (3 x^{2}+30 x +75\right )+4}\) | \(18\) |
risch | \(\frac {1}{4 \ln \left (3 x^{2}+30 x +75\right )+4}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 14, normalized size = 0.88 \begin {gather*} \frac {1}{4 \, {\left (\log \relax (3) + 2 \, \log \left (x + 5\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 17, normalized size = 1.06 \begin {gather*} \frac {1}{4\,\left (\ln \left (3\,x^2+30\,x+75\right )+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.94 \begin {gather*} \frac {1}{4 \log {\left (3 x^{2} + 30 x + 75 \right )} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________