3.77.44 \(\int \frac {e^{e^{-2+2 x}} (e^{\frac {2 (30+x)}{3}} (-3-2 x) \log (4)-6 e^{-2+2 x+\frac {2 (30+x)}{3}} x \log (4))}{3+6 e^{e^{-2+2 x}+\frac {2 (30+x)}{3}} x+3 e^{2 e^{-2+2 x}+\frac {4 (30+x)}{3}} x^2} \, dx\)

Optimal. Leaf size=25 \[ \frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.67, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 12, 6686} \begin {gather*} \frac {\log (4)}{e^{\frac {2 x}{3}+e^{2 x-2}+20} x+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^E^(-2 + 2*x)*(E^((2*(30 + x))/3)*(-3 - 2*x)*Log[4] - 6*E^(-2 + 2*x + (2*(30 + x))/3)*x*Log[4]))/(3 + 6*
E^(E^(-2 + 2*x) + (2*(30 + x))/3)*x + 3*E^(2*E^(-2 + 2*x) + (4*(30 + x))/3)*x^2),x]

[Out]

Log[4]/(1 + E^(20 + E^(-2 + 2*x) + (2*x)/3)*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{18+e^{-2+2 x}+\frac {2 x}{3}} \left (-6 e^{2 x} x-e^2 (3+2 x)\right ) \log (4)}{3 \left (1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x\right )^2} \, dx\\ &=\frac {1}{3} \log (4) \int \frac {e^{18+e^{-2+2 x}+\frac {2 x}{3}} \left (-6 e^{2 x} x-e^2 (3+2 x)\right )}{\left (1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x\right )^2} \, dx\\ &=\frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 25, normalized size = 1.00 \begin {gather*} \frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^E^(-2 + 2*x)*(E^((2*(30 + x))/3)*(-3 - 2*x)*Log[4] - 6*E^(-2 + 2*x + (2*(30 + x))/3)*x*Log[4]))/(
3 + 6*E^(E^(-2 + 2*x) + (2*(30 + x))/3)*x + 3*E^(2*E^(-2 + 2*x) + (4*(30 + x))/3)*x^2),x]

[Out]

Log[4]/(1 + E^(20 + E^(-2 + 2*x) + (2*x)/3)*x)

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 31, normalized size = 1.24 \begin {gather*} \frac {2 \, \log \relax (2)}{x e^{\left (\frac {1}{3} \, {\left (2 \, {\left (x + 30\right )} e^{62} + 3 \, e^{\left (2 \, x + 60\right )}\right )} e^{\left (-62\right )}\right )} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x*log(2)*exp(1/6*x+5)^4*exp(x-1)^2+2*(-2*x-3)*log(2)*exp(1/6*x+5)^4)*exp(exp(x-1)^2)/(3*x^2*exp
(1/6*x+5)^8*exp(exp(x-1)^2)^2+6*x*exp(1/6*x+5)^4*exp(exp(x-1)^2)+3),x, algorithm="fricas")

[Out]

2*log(2)/(x*e^(1/3*(2*(x + 30)*e^62 + 3*e^(2*x + 60))*e^(-62)) + 1)

________________________________________________________________________________________

giac [B]  time = 0.21, size = 261, normalized size = 10.44 \begin {gather*} -\frac {2 \, {\left (36 \, x^{3} e^{\left (\frac {14}{3} \, x + e^{\left (2 \, x - 2\right )} + 18\right )} \log \relax (2) + 24 \, x^{3} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} \log \relax (2) + 4 \, x^{3} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2) + 36 \, x^{2} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} \log \relax (2) + 12 \, x^{2} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2) + 9 \, x e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2)\right )}}{36 \, x^{3} e^{\left (\frac {14}{3} \, x + e^{\left (2 \, x - 2\right )} + 18\right )} + 24 \, x^{3} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} + 4 \, x^{3} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 4 \, x^{2} e^{2} + 24 \, x^{2} e^{\left (2 \, x\right )} + 36 \, x^{2} e^{\left (4 \, x - 2\right )} + 36 \, x^{2} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} + 12 \, x^{2} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 12 \, x e^{2} + 36 \, x e^{\left (2 \, x\right )} + 9 \, x e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 9 \, e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x*log(2)*exp(1/6*x+5)^4*exp(x-1)^2+2*(-2*x-3)*log(2)*exp(1/6*x+5)^4)*exp(exp(x-1)^2)/(3*x^2*exp
(1/6*x+5)^8*exp(exp(x-1)^2)^2+6*x*exp(1/6*x+5)^4*exp(exp(x-1)^2)+3),x, algorithm="giac")

[Out]

-2*(36*x^3*e^(14/3*x + e^(2*x - 2) + 18)*log(2) + 24*x^3*e^(8/3*x + e^(2*x - 2) + 20)*log(2) + 4*x^3*e^(2/3*x
+ e^(2*x - 2) + 22)*log(2) + 36*x^2*e^(8/3*x + e^(2*x - 2) + 20)*log(2) + 12*x^2*e^(2/3*x + e^(2*x - 2) + 22)*
log(2) + 9*x*e^(2/3*x + e^(2*x - 2) + 22)*log(2))/(36*x^3*e^(14/3*x + e^(2*x - 2) + 18) + 24*x^3*e^(8/3*x + e^
(2*x - 2) + 20) + 4*x^3*e^(2/3*x + e^(2*x - 2) + 22) + 4*x^2*e^2 + 24*x^2*e^(2*x) + 36*x^2*e^(4*x - 2) + 36*x^
2*e^(8/3*x + e^(2*x - 2) + 20) + 12*x^2*e^(2/3*x + e^(2*x - 2) + 22) + 12*x*e^2 + 36*x*e^(2*x) + 9*x*e^(2/3*x
+ e^(2*x - 2) + 22) + 9*e^2)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 23, normalized size = 0.92




method result size



risch \(\frac {2 \ln \relax (2)}{x \,{\mathrm e}^{\frac {2 x}{3}+20+{\mathrm e}^{2 x -2}}+1}\) \(23\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-12*x*ln(2)*exp(1/6*x+5)^4*exp(x-1)^2+2*(-2*x-3)*ln(2)*exp(1/6*x+5)^4)*exp(exp(x-1)^2)/(3*x^2*exp(1/6*x+5
)^8*exp(exp(x-1)^2)^2+6*x*exp(1/6*x+5)^4*exp(exp(x-1)^2)+3),x,method=_RETURNVERBOSE)

[Out]

2*ln(2)/(x*exp(2/3*x+20+exp(2*x-2))+1)

________________________________________________________________________________________

maxima [B]  time = 0.62, size = 80, normalized size = 3.20 \begin {gather*} \frac {2 \, {\left (2 \, x e^{2} \log \relax (2) + 6 \, x e^{\left (2 \, x\right )} \log \relax (2) + 3 \, e^{2} \log \relax (2)\right )}}{2 \, x e^{2} + 6 \, x e^{\left (2 \, x\right )} + {\left (2 \, x^{2} e^{22} + 6 \, x^{2} e^{\left (2 \, x + 20\right )} + 3 \, x e^{22}\right )} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )}\right )} + 3 \, e^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x*log(2)*exp(1/6*x+5)^4*exp(x-1)^2+2*(-2*x-3)*log(2)*exp(1/6*x+5)^4)*exp(exp(x-1)^2)/(3*x^2*exp
(1/6*x+5)^8*exp(exp(x-1)^2)^2+6*x*exp(1/6*x+5)^4*exp(exp(x-1)^2)+3),x, algorithm="maxima")

[Out]

2*(2*x*e^2*log(2) + 6*x*e^(2*x)*log(2) + 3*e^2*log(2))/(2*x*e^2 + 6*x*e^(2*x) + (2*x^2*e^22 + 6*x^2*e^(2*x + 2
0) + 3*x*e^22)*e^(2/3*x + e^(2*x - 2)) + 3*e^2)

________________________________________________________________________________________

mupad [B]  time = 5.93, size = 76, normalized size = 3.04 \begin {gather*} \frac {2\,x\,\ln \relax (2)\,\left (2\,x+6\,x\,{\mathrm {e}}^{2\,x-2}+3\right )}{\left ({\mathrm {e}}^{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-2}}+\frac {{\mathrm {e}}^{-\frac {2\,x}{3}-20}}{x}\right )\,\left (3\,x^2\,{\mathrm {e}}^{\frac {2\,x}{3}+20}+2\,x^3\,{\mathrm {e}}^{\frac {2\,x}{3}+20}+6\,x^3\,{\mathrm {e}}^{\frac {8\,x}{3}+18}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(exp(2*x - 2))*(2*exp((2*x)/3 + 20)*log(2)*(2*x + 3) + 12*x*exp(2*x - 2)*exp((2*x)/3 + 20)*log(2)))/(
3*x^2*exp(2*exp(2*x - 2))*exp((4*x)/3 + 40) + 6*x*exp(exp(2*x - 2))*exp((2*x)/3 + 20) + 3),x)

[Out]

(2*x*log(2)*(2*x + 6*x*exp(2*x - 2) + 3))/((exp(exp(2*x)*exp(-2)) + exp(- (2*x)/3 - 20)/x)*(3*x^2*exp((2*x)/3
+ 20) + 2*x^3*exp((2*x)/3 + 20) + 6*x^3*exp((8*x)/3 + 18)))

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 \log {\relax (2 )}}{x e^{\frac {e^{2 x + 60}}{e^{62}}} e^{\frac {2 x}{3} + 20} + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*x*ln(2)*exp(1/6*x+5)**4*exp(x-1)**2+2*(-2*x-3)*ln(2)*exp(1/6*x+5)**4)*exp(exp(x-1)**2)/(3*x**2*
exp(1/6*x+5)**8*exp(exp(x-1)**2)**2+6*x*exp(1/6*x+5)**4*exp(exp(x-1)**2)+3),x)

[Out]

2*log(2)/(x*exp(exp(-62)*exp(2*x + 60))*exp(2*x/3 + 20) + 1)

________________________________________________________________________________________