Optimal. Leaf size=25 \[ \frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x} \]
________________________________________________________________________________________
Rubi [A] time = 0.67, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 12, 6686} \begin {gather*} \frac {\log (4)}{e^{\frac {2 x}{3}+e^{2 x-2}+20} x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{18+e^{-2+2 x}+\frac {2 x}{3}} \left (-6 e^{2 x} x-e^2 (3+2 x)\right ) \log (4)}{3 \left (1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x\right )^2} \, dx\\ &=\frac {1}{3} \log (4) \int \frac {e^{18+e^{-2+2 x}+\frac {2 x}{3}} \left (-6 e^{2 x} x-e^2 (3+2 x)\right )}{\left (1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x\right )^2} \, dx\\ &=\frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 25, normalized size = 1.00 \begin {gather*} \frac {\log (4)}{1+e^{20+e^{-2+2 x}+\frac {2 x}{3}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 31, normalized size = 1.24 \begin {gather*} \frac {2 \, \log \relax (2)}{x e^{\left (\frac {1}{3} \, {\left (2 \, {\left (x + 30\right )} e^{62} + 3 \, e^{\left (2 \, x + 60\right )}\right )} e^{\left (-62\right )}\right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 261, normalized size = 10.44 \begin {gather*} -\frac {2 \, {\left (36 \, x^{3} e^{\left (\frac {14}{3} \, x + e^{\left (2 \, x - 2\right )} + 18\right )} \log \relax (2) + 24 \, x^{3} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} \log \relax (2) + 4 \, x^{3} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2) + 36 \, x^{2} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} \log \relax (2) + 12 \, x^{2} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2) + 9 \, x e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} \log \relax (2)\right )}}{36 \, x^{3} e^{\left (\frac {14}{3} \, x + e^{\left (2 \, x - 2\right )} + 18\right )} + 24 \, x^{3} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} + 4 \, x^{3} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 4 \, x^{2} e^{2} + 24 \, x^{2} e^{\left (2 \, x\right )} + 36 \, x^{2} e^{\left (4 \, x - 2\right )} + 36 \, x^{2} e^{\left (\frac {8}{3} \, x + e^{\left (2 \, x - 2\right )} + 20\right )} + 12 \, x^{2} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 12 \, x e^{2} + 36 \, x e^{\left (2 \, x\right )} + 9 \, x e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )} + 22\right )} + 9 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 0.92
method | result | size |
risch | \(\frac {2 \ln \relax (2)}{x \,{\mathrm e}^{\frac {2 x}{3}+20+{\mathrm e}^{2 x -2}}+1}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 80, normalized size = 3.20 \begin {gather*} \frac {2 \, {\left (2 \, x e^{2} \log \relax (2) + 6 \, x e^{\left (2 \, x\right )} \log \relax (2) + 3 \, e^{2} \log \relax (2)\right )}}{2 \, x e^{2} + 6 \, x e^{\left (2 \, x\right )} + {\left (2 \, x^{2} e^{22} + 6 \, x^{2} e^{\left (2 \, x + 20\right )} + 3 \, x e^{22}\right )} e^{\left (\frac {2}{3} \, x + e^{\left (2 \, x - 2\right )}\right )} + 3 \, e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.93, size = 76, normalized size = 3.04 \begin {gather*} \frac {2\,x\,\ln \relax (2)\,\left (2\,x+6\,x\,{\mathrm {e}}^{2\,x-2}+3\right )}{\left ({\mathrm {e}}^{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-2}}+\frac {{\mathrm {e}}^{-\frac {2\,x}{3}-20}}{x}\right )\,\left (3\,x^2\,{\mathrm {e}}^{\frac {2\,x}{3}+20}+2\,x^3\,{\mathrm {e}}^{\frac {2\,x}{3}+20}+6\,x^3\,{\mathrm {e}}^{\frac {8\,x}{3}+18}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 27, normalized size = 1.08 \begin {gather*} \frac {2 \log {\relax (2 )}}{x e^{\frac {e^{2 x + 60}}{e^{62}}} e^{\frac {2 x}{3} + 20} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________