Optimal. Leaf size=12 \[ -\frac {x}{(4+x+5 \log (x))^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+x-5 \log (x)}{64+48 x+12 x^2+x^3+\left (240+120 x+15 x^2\right ) \log (x)+(300+75 x) \log ^2(x)+125 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+x-5 \log (x)}{(4+x+5 \log (x))^3} \, dx\\ &=\int \left (\frac {2 (5+x)}{(4+x+5 \log (x))^3}-\frac {1}{(4+x+5 \log (x))^2}\right ) \, dx\\ &=2 \int \frac {5+x}{(4+x+5 \log (x))^3} \, dx-\int \frac {1}{(4+x+5 \log (x))^2} \, dx\\ &=2 \int \left (\frac {5}{(4+x+5 \log (x))^3}+\frac {x}{(4+x+5 \log (x))^3}\right ) \, dx-\int \frac {1}{(4+x+5 \log (x))^2} \, dx\\ &=2 \int \frac {x}{(4+x+5 \log (x))^3} \, dx+10 \int \frac {1}{(4+x+5 \log (x))^3} \, dx-\int \frac {1}{(4+x+5 \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 12, normalized size = 1.00 \begin {gather*} -\frac {x}{(4+x+5 \log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.99, size = 26, normalized size = 2.17 \begin {gather*} -\frac {x}{x^{2} + 10 \, {\left (x + 4\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 53, normalized size = 4.42 \begin {gather*} -\frac {x^{2} + 5 \, x}{x^{3} + 10 \, x^{2} \log \relax (x) + 25 \, x \log \relax (x)^{2} + 13 \, x^{2} + 90 \, x \log \relax (x) + 125 \, \log \relax (x)^{2} + 56 \, x + 200 \, \log \relax (x) + 80} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 1.08
method | result | size |
norman | \(-\frac {x}{\left (5 \ln \relax (x )+4+x \right )^{2}}\) | \(13\) |
risch | \(-\frac {x}{\left (5 \ln \relax (x )+4+x \right )^{2}}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 26, normalized size = 2.17 \begin {gather*} -\frac {x}{x^{2} + 10 \, {\left (x + 4\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.01, size = 12, normalized size = 1.00 \begin {gather*} -\frac {x}{{\left (x+5\,\ln \relax (x)+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 26, normalized size = 2.17 \begin {gather*} - \frac {x}{x^{2} + 8 x + \left (10 x + 40\right ) \log {\relax (x )} + 25 \log {\relax (x )}^{2} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________