Optimal. Leaf size=26 \[ 3-e^{4-\frac {-1+x}{x}-x}+2 x-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 5, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {14, 43, 6706} \begin {gather*} 2 x-e^{-x+\frac {1}{x}+3}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1+2 x}{x}+\frac {e^{3+\frac {1}{x}-x} \left (1+x^2\right )}{x^2}\right ) \, dx\\ &=\int \frac {-1+2 x}{x} \, dx+\int \frac {e^{3+\frac {1}{x}-x} \left (1+x^2\right )}{x^2} \, dx\\ &=-e^{3+\frac {1}{x}-x}+\int \left (2-\frac {1}{x}\right ) \, dx\\ &=-e^{3+\frac {1}{x}-x}+2 x-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 20, normalized size = 0.77 \begin {gather*} -e^{3+\frac {1}{x}-x}+2 x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 24, normalized size = 0.92 \begin {gather*} 2 \, x - e^{\left (-\frac {x^{2} - 3 \, x - 1}{x}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 24, normalized size = 0.92 \begin {gather*} 2 \, x - e^{\left (-\frac {x^{2} - 3 \, x - 1}{x}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.96
method | result | size |
risch | \(2 x -\ln \relax (x )-{\mathrm e}^{-\frac {x^{2}-3 x -1}{x}}\) | \(25\) |
norman | \(\frac {2 x^{2}-x \,{\mathrm e}^{\frac {-x^{2}+3 x +1}{x}}}{x}-\ln \relax (x )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 19, normalized size = 0.73 \begin {gather*} 2 \, x - e^{\left (-x + \frac {1}{x} + 3\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.79, size = 20, normalized size = 0.77 \begin {gather*} 2\,x-\ln \relax (x)-{\mathrm {e}}^{-x}\,{\mathrm {e}}^{1/x}\,{\mathrm {e}}^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.65 \begin {gather*} 2 x - e^{\frac {- x^{2} + 3 x + 1}{x}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________