Optimal. Leaf size=25 \[ (-x+\log (400)) \left (-\frac {2}{5} e^{e^2+x^2}+\log ^2(x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 44, normalized size of antiderivative = 1.76, number of steps used = 16, number of rules used = 12, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {12, 14, 2226, 2204, 2212, 2209, 43, 2295, 6742, 2346, 2301, 2296} \begin {gather*} \frac {2}{5} e^{x^2+e^2} x-\frac {2}{5} e^{x^2+e^2} \log (400)-x \log ^2(x)+\log (400) \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rule 2295
Rule 2296
Rule 2301
Rule 2346
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{e^2+x^2} \left (2 x+4 x^3-4 x^2 \log (400)\right )+(-10 x+10 \log (400)) \log (x)-5 x \log ^2(x)}{x} \, dx\\ &=\frac {1}{5} \int \left (2 e^{e^2+x^2} \left (1+2 x^2-2 x \log (400)\right )-\frac {5 \log (x) (2 x-2 \log (400)+x \log (x))}{x}\right ) \, dx\\ &=\frac {2}{5} \int e^{e^2+x^2} \left (1+2 x^2-2 x \log (400)\right ) \, dx-\int \frac {\log (x) (2 x-2 \log (400)+x \log (x))}{x} \, dx\\ &=\frac {2}{5} \int \left (e^{e^2+x^2}+2 e^{e^2+x^2} x^2-2 e^{e^2+x^2} x \log (400)\right ) \, dx-\int \left (\frac {2 (x-\log (400)) \log (x)}{x}+\log ^2(x)\right ) \, dx\\ &=\frac {2}{5} \int e^{e^2+x^2} \, dx+\frac {4}{5} \int e^{e^2+x^2} x^2 \, dx-2 \int \frac {(x-\log (400)) \log (x)}{x} \, dx-\frac {1}{5} (4 \log (400)) \int e^{e^2+x^2} x \, dx-\int \log ^2(x) \, dx\\ &=\frac {2}{5} e^{e^2+x^2} x+\frac {1}{5} e^{e^2} \sqrt {\pi } \text {erfi}(x)-\frac {2}{5} e^{e^2+x^2} \log (400)-x \log ^2(x)-\frac {2}{5} \int e^{e^2+x^2} \, dx+(2 \log (400)) \int \frac {\log (x)}{x} \, dx\\ &=\frac {2}{5} e^{e^2+x^2} x-\frac {2}{5} e^{e^2+x^2} \log (400)-x \log ^2(x)+\log (400) \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.12 \begin {gather*} \frac {1}{5} (x-\log (400)) \left (2 e^{e^2+x^2}-5 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 28, normalized size = 1.12 \begin {gather*} -{\left (x - 2 \, \log \left (20\right )\right )} \log \relax (x)^{2} + \frac {2}{5} \, {\left (x - 2 \, \log \left (20\right )\right )} e^{\left (x^{2} + e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 37, normalized size = 1.48 \begin {gather*} -x \log \relax (x)^{2} + 2 \, \log \left (20\right ) \log \relax (x)^{2} + \frac {2}{5} \, x e^{\left (x^{2} + e^{2}\right )} - \frac {4}{5} \, e^{\left (x^{2} + e^{2}\right )} \log \left (20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 38, normalized size = 1.52
method | result | size |
default | \(-x \ln \relax (x )^{2}+2 \ln \left (20\right ) \ln \relax (x )^{2}-\frac {4 \,{\mathrm e}^{x^{2}} \ln \left (20\right ) {\mathrm e}^{{\mathrm e}^{2}}}{5}+\frac {2 \,{\mathrm e}^{x^{2}} {\mathrm e}^{{\mathrm e}^{2}} x}{5}\) | \(38\) |
risch | \(\frac {\left (-5 x +20 \ln \relax (2)+10 \ln \relax (5)\right ) \ln \relax (x )^{2}}{5}-\frac {2 \left (4 \ln \relax (2)+2 \ln \relax (5)-x \right ) {\mathrm e}^{{\mathrm e}^{2}+x^{2}}}{5}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 51, normalized size = 2.04 \begin {gather*} 2 \, \log \left (20\right ) \log \relax (x)^{2} - {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + \frac {2}{5} \, x e^{\left (x^{2} + e^{2}\right )} - \frac {4}{5} \, e^{\left (x^{2} + e^{2}\right )} \log \left (20\right ) - 2 \, x \log \relax (x) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.95, size = 24, normalized size = 0.96 \begin {gather*} \frac {\left (2\,{\mathrm {e}}^{x^2+{\mathrm {e}}^2}-5\,{\ln \relax (x)}^2\right )\,\left (x-\ln \left (400\right )\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 36, normalized size = 1.44 \begin {gather*} \left (- x + 2 \log {\left (20 \right )}\right ) \log {\relax (x )}^{2} + \frac {\left (2 x e^{e^{2}} - 4 e^{e^{2}} \log {\left (20 \right )}\right ) e^{x^{2}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________