3.76.66 \(\int \frac {1}{2} (2+e^{\frac {1}{4} (49 x^2+14 x^3+x^4) \log ^2(4)} (49 x+21 x^2+2 x^3) \log ^2(4)) \, dx\)

Optimal. Leaf size=21 \[ 4+e^{\frac {1}{4} x^2 (7+x)^2 \log ^2(4)}+x \]

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 26, normalized size of antiderivative = 1.24, number of steps used = 4, number of rules used = 3, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {12, 1594, 6706} \begin {gather*} e^{\frac {1}{4} \left (x^4+14 x^3+49 x^2\right ) \log ^2(4)}+x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2 + E^(((49*x^2 + 14*x^3 + x^4)*Log[4]^2)/4)*(49*x + 21*x^2 + 2*x^3)*Log[4]^2)/2,x]

[Out]

E^(((49*x^2 + 14*x^3 + x^4)*Log[4]^2)/4) + x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (2+e^{\frac {1}{4} \left (49 x^2+14 x^3+x^4\right ) \log ^2(4)} \left (49 x+21 x^2+2 x^3\right ) \log ^2(4)\right ) \, dx\\ &=x+\frac {1}{2} \log ^2(4) \int e^{\frac {1}{4} \left (49 x^2+14 x^3+x^4\right ) \log ^2(4)} \left (49 x+21 x^2+2 x^3\right ) \, dx\\ &=x+\frac {1}{2} \log ^2(4) \int e^{\frac {1}{4} \left (49 x^2+14 x^3+x^4\right ) \log ^2(4)} x \left (49+21 x+2 x^2\right ) \, dx\\ &=e^{\frac {1}{4} \left (49 x^2+14 x^3+x^4\right ) \log ^2(4)}+x\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 20, normalized size = 0.95 \begin {gather*} e^{\frac {1}{4} x^2 (7+x)^2 \log ^2(4)}+x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2 + E^(((49*x^2 + 14*x^3 + x^4)*Log[4]^2)/4)*(49*x + 21*x^2 + 2*x^3)*Log[4]^2)/2,x]

[Out]

E^((x^2*(7 + x)^2*Log[4]^2)/4) + x

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 22, normalized size = 1.05 \begin {gather*} x + e^{\left ({\left (x^{4} + 14 \, x^{3} + 49 \, x^{2}\right )} \log \relax (2)^{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*(2*x^3+21*x^2+49*x)*log(2)^2*exp((x^4+14*x^3+49*x^2)*log(2)^2)+1,x, algorithm="fricas")

[Out]

x + e^((x^4 + 14*x^3 + 49*x^2)*log(2)^2)

________________________________________________________________________________________

giac [A]  time = 0.26, size = 30, normalized size = 1.43 \begin {gather*} x + e^{\left (x^{4} \log \relax (2)^{2} + 14 \, x^{3} \log \relax (2)^{2} + 49 \, x^{2} \log \relax (2)^{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*(2*x^3+21*x^2+49*x)*log(2)^2*exp((x^4+14*x^3+49*x^2)*log(2)^2)+1,x, algorithm="giac")

[Out]

x + e^(x^4*log(2)^2 + 14*x^3*log(2)^2 + 49*x^2*log(2)^2)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 17, normalized size = 0.81




method result size



risch \(x +{\mathrm e}^{\left (x +7\right )^{2} \ln \relax (2)^{2} x^{2}}\) \(17\)
default \(x +{\mathrm e}^{\left (x^{4}+14 x^{3}+49 x^{2}\right ) \ln \relax (2)^{2}}\) \(23\)
norman \(x +{\mathrm e}^{\left (x^{4}+14 x^{3}+49 x^{2}\right ) \ln \relax (2)^{2}}\) \(23\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*(2*x^3+21*x^2+49*x)*ln(2)^2*exp((x^4+14*x^3+49*x^2)*ln(2)^2)+1,x,method=_RETURNVERBOSE)

[Out]

x+exp((x+7)^2*ln(2)^2*x^2)

________________________________________________________________________________________

maxima [A]  time = 0.56, size = 30, normalized size = 1.43 \begin {gather*} x + e^{\left (x^{4} \log \relax (2)^{2} + 14 \, x^{3} \log \relax (2)^{2} + 49 \, x^{2} \log \relax (2)^{2}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*(2*x^3+21*x^2+49*x)*log(2)^2*exp((x^4+14*x^3+49*x^2)*log(2)^2)+1,x, algorithm="maxima")

[Out]

x + e^(x^4*log(2)^2 + 14*x^3*log(2)^2 + 49*x^2*log(2)^2)

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 32, normalized size = 1.52 \begin {gather*} x+{\mathrm {e}}^{x^4\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{14\,x^3\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{49\,x^2\,{\ln \relax (2)}^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*exp(log(2)^2*(49*x^2 + 14*x^3 + x^4))*log(2)^2*(49*x + 21*x^2 + 2*x^3) + 1,x)

[Out]

x + exp(x^4*log(2)^2)*exp(14*x^3*log(2)^2)*exp(49*x^2*log(2)^2)

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 20, normalized size = 0.95 \begin {gather*} x + e^{\left (x^{4} + 14 x^{3} + 49 x^{2}\right ) \log {\relax (2 )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(2*(2*x**3+21*x**2+49*x)*ln(2)**2*exp((x**4+14*x**3+49*x**2)*ln(2)**2)+1,x)

[Out]

x + exp((x**4 + 14*x**3 + 49*x**2)*log(2)**2)

________________________________________________________________________________________