Optimal. Leaf size=29 \[ 2 e^{e^{x^2+x \left (-2+e^x-e^{6 x}+x\right )}}-x \]
________________________________________________________________________________________
Rubi [F] time = 8.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-1+\exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) \left (-4+e^{6 x} (-2-12 x)+8 x+e^x (2+2 x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+\int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) \left (-4+e^{6 x} (-2-12 x)+8 x+e^x (2+2 x)\right ) \, dx\\ &=-x+\int \left (-4 \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right )+8 \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) x+2 \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right ) (1+x)-2 \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right ) (1+6 x)\right ) \, dx\\ &=-x+2 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right ) (1+x) \, dx-2 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right ) (1+6 x) \, dx-4 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) \, dx+8 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) x \, dx\\ &=-x+2 \int \left (\exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right )+\exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right ) x\right ) \, dx-2 \int \left (\exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right )+6 \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right ) x\right ) \, dx-4 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) \, dx+8 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) x \, dx\\ &=-x+2 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right ) \, dx-2 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right ) \, dx+2 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-x+e^x x-e^{6 x} x+2 x^2\right ) x \, dx-4 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) \, dx+8 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}-2 x+e^x x-e^{6 x} x+2 x^2\right ) x \, dx-12 \int \exp \left (e^{-2 x+e^x x-e^{6 x} x+2 x^2}+4 x+e^x x-e^{6 x} x+2 x^2\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.11, size = 32, normalized size = 1.10 \begin {gather*} 2 e^{e^{-2 x+e^x x-e^{6 x} x+2 x^2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 91, normalized size = 3.14 \begin {gather*} -{\left (x e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x\right )} - 2 \, e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x + e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x\right )}\right )}\right )} e^{\left (-2 \, x^{2} + x e^{\left (6 \, x\right )} - x e^{x} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -2 \, {\left ({\left (6 \, x + 1\right )} e^{\left (6 \, x\right )} - {\left (x + 1\right )} e^{x} - 4 \, x + 2\right )} e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x + e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x\right )}\right )} - 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.83
method | result | size |
risch | \(2 \,{\mathrm e}^{{\mathrm e}^{x \left ({\mathrm e}^{x}-{\mathrm e}^{6 x}+2 x -2\right )}}-x\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 28, normalized size = 0.97 \begin {gather*} -x + 2 \, e^{\left (e^{\left (2 \, x^{2} - x e^{\left (6 \, x\right )} + x e^{x} - 2 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.61, size = 31, normalized size = 1.07 \begin {gather*} 2\,{\mathrm {e}}^{{\mathrm {e}}^{x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{6\,x}}\,{\mathrm {e}}^{2\,x^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.23, size = 26, normalized size = 0.90 \begin {gather*} - x + 2 e^{e^{2 x^{2} - x e^{6 x} + x e^{x} - 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________