Optimal. Leaf size=25 \[ \log (x)+\left (3-\frac {3}{4 \log \left (4+\frac {1}{4} (e+4 x)\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.47, antiderivative size = 35, normalized size of antiderivative = 1.40, number of steps used = 12, number of rules used = 7, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.101, Rules used = {6, 1593, 6688, 2390, 12, 2302, 30} \begin {gather*} \frac {9}{16 \log ^2\left (x+\frac {16+e}{4}\right )}+\log (x)-\frac {9}{2 \log \left (x+\frac {16+e}{4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 30
Rule 1593
Rule 2302
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9 x+36 x \log \left (\frac {1}{4} (16+e+4 x)\right )+(32+2 e+8 x) \log ^3\left (\frac {1}{4} (16+e+4 x)\right )}{\left ((32+2 e) x+8 x^2\right ) \log ^3\left (\frac {1}{4} (16+e+4 x)\right )} \, dx\\ &=\int \frac {-9 x+36 x \log \left (\frac {1}{4} (16+e+4 x)\right )+(32+2 e+8 x) \log ^3\left (\frac {1}{4} (16+e+4 x)\right )}{x (32+2 e+8 x) \log ^3\left (\frac {1}{4} (16+e+4 x)\right )} \, dx\\ &=\int \left (\frac {1}{x}-\frac {9}{2 (16+e+4 x) \log ^3\left (4+\frac {e}{4}+x\right )}+\frac {18}{(16+e+4 x) \log ^2\left (4+\frac {e}{4}+x\right )}\right ) \, dx\\ &=\log (x)-\frac {9}{2} \int \frac {1}{(16+e+4 x) \log ^3\left (4+\frac {e}{4}+x\right )} \, dx+18 \int \frac {1}{(16+e+4 x) \log ^2\left (4+\frac {e}{4}+x\right )} \, dx\\ &=\log (x)-\frac {9}{2} \operatorname {Subst}\left (\int \frac {4+\frac {e}{4}}{(16+e) x \log ^3(x)} \, dx,x,4+\frac {e}{4}+x\right )+18 \operatorname {Subst}\left (\int \frac {4+\frac {e}{4}}{(16+e) x \log ^2(x)} \, dx,x,4+\frac {e}{4}+x\right )\\ &=\log (x)-\frac {9}{8} \operatorname {Subst}\left (\int \frac {1}{x \log ^3(x)} \, dx,x,4+\frac {e}{4}+x\right )+\frac {9}{2} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,4+\frac {e}{4}+x\right )\\ &=\log (x)-\frac {9}{8} \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log \left (4+\frac {e}{4}+x\right )\right )+\frac {9}{2} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (4+\frac {e}{4}+x\right )\right )\\ &=\log (x)+\frac {9}{16 \log ^2\left (\frac {16+e}{4}+x\right )}-\frac {9}{2 \log \left (\frac {16+e}{4}+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 33, normalized size = 1.32 \begin {gather*} \log (x)+\frac {9}{16 \log ^2\left (4+\frac {e}{4}+x\right )}-\frac {9}{2 \log \left (4+\frac {e}{4}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 38, normalized size = 1.52 \begin {gather*} \frac {16 \, \log \left (x + \frac {1}{4} \, e + 4\right )^{2} \log \relax (x) - 72 \, \log \left (x + \frac {1}{4} \, e + 4\right ) + 9}{16 \, \log \left (x + \frac {1}{4} \, e + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 38, normalized size = 1.52 \begin {gather*} \frac {16 \, \log \left (x + \frac {1}{4} \, e + 4\right )^{2} \log \relax (x) - 72 \, \log \left (x + \frac {1}{4} \, e + 4\right ) + 9}{16 \, \log \left (x + \frac {1}{4} \, e + 4\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 27, normalized size = 1.08
method | result | size |
norman | \(\frac {\frac {9}{16}-\frac {9 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )}{2}}{\ln \left (\frac {{\mathrm e}}{4}+x +4\right )^{2}}+\ln \relax (x )\) | \(27\) |
risch | \(\ln \relax (x )-\frac {9 \left (-1+8 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )\right )}{16 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )^{2}}\) | \(28\) |
derivativedivides | \(\ln \left (-4 x \right )+\frac {9}{16 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )^{2}}-\frac {9}{2 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )}\) | \(30\) |
default | \(\ln \left (-4 x \right )+\frac {9}{16 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )^{2}}-\frac {9}{2 \ln \left (\frac {{\mathrm e}}{4}+x +4\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 287, normalized size = 11.48 \begin {gather*} -{\left (\frac {\log \left (4 \, x + e + 16\right )}{e + 16} - \frac {\log \relax (x)}{e + 16}\right )} e - \frac {\log \left (x + \frac {1}{4} \, e + 4\right )^{3}}{2 \, {\left (4 \, \log \relax (2)^{2} - 4 \, \log \relax (2) \log \left (4 \, x + e + 16\right ) + \log \left (4 \, x + e + 16\right )^{2}\right )}} + 3 \, {\left (2 \, \log \relax (2) - \log \left (4 \, x + e + 16\right )\right )} \log \left (-2 \, \log \relax (2) + \log \left (4 \, x + e + 16\right )\right ) + 3 \, \log \left (x + \frac {1}{4} \, e + 4\right ) \log \left (-2 \, \log \relax (2) + \log \left (4 \, x + e + 16\right )\right ) + \frac {3 \, \log \left (x + \frac {1}{4} \, e + 4\right )^{2}}{2 \, {\left (2 \, \log \relax (2) - \log \left (4 \, x + e + 16\right )\right )}} - \frac {16 \, \log \left (4 \, x + e + 16\right )}{e + 16} - \frac {9 \, \log \left (x + \frac {1}{4} \, e + 4\right )}{4 \, {\left (4 \, \log \relax (2)^{2} - 4 \, \log \relax (2) \log \left (4 \, x + e + 16\right ) + \log \left (4 \, x + e + 16\right )^{2}\right )}} + \frac {16 \, \log \relax (x)}{e + 16} + \frac {9}{16 \, {\left (4 \, \log \relax (2)^{2} - 4 \, \log \relax (2) \log \left (4 \, x + e + 16\right ) + \log \left (4 \, x + e + 16\right )^{2}\right )}} + \frac {9}{4 \, {\left (2 \, \log \relax (2) - \log \left (4 \, x + e + 16\right )\right )}} + 3 \, \log \left (4 \, x + e + 16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.00, size = 38, normalized size = 1.52 \begin {gather*} \frac {16\,\ln \relax (x)\,{\ln \left (x+\frac {\mathrm {e}}{4}+4\right )}^2-72\,\ln \left (x+\frac {\mathrm {e}}{4}+4\right )+9}{16\,{\ln \left (x+\frac {\mathrm {e}}{4}+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.16 \begin {gather*} \frac {9 - 72 \log {\left (x + \frac {e}{4} + 4 \right )}}{16 \log {\left (x + \frac {e}{4} + 4 \right )}^{2}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________