Optimal. Leaf size=25 \[ -4+\log (5)+\log \left (\left (-x+x \left (3+e^x+x-x^2\right )\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+e^x+x-x^2+\left (2+2 x-3 x^2+e^x (1+x)\right ) \log (x)}{\left (2 x+e^x x+x^2-x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-3 x+x^2}{2+e^x+x-x^2}+\frac {1+\log (x)+x \log (x)}{x \log (x)}\right ) \, dx\\ &=\int \frac {-1-3 x+x^2}{2+e^x+x-x^2} \, dx+\int \frac {1+\log (x)+x \log (x)}{x \log (x)} \, dx\\ &=\int \left (-\frac {1}{2+e^x+x-x^2}+\frac {3 x}{-2-e^x-x+x^2}-\frac {x^2}{-2-e^x-x+x^2}\right ) \, dx+\int \left (\frac {1+x}{x}+\frac {1}{x \log (x)}\right ) \, dx\\ &=3 \int \frac {x}{-2-e^x-x+x^2} \, dx+\int \frac {1+x}{x} \, dx-\int \frac {1}{2+e^x+x-x^2} \, dx-\int \frac {x^2}{-2-e^x-x+x^2} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=3 \int \frac {x}{-2-e^x-x+x^2} \, dx+\int \left (1+\frac {1}{x}\right ) \, dx-\int \frac {1}{2+e^x+x-x^2} \, dx-\int \frac {x^2}{-2-e^x-x+x^2} \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=x+\log (x)+\log (\log (x))+3 \int \frac {x}{-2-e^x-x+x^2} \, dx-\int \frac {1}{2+e^x+x-x^2} \, dx-\int \frac {x^2}{-2-e^x-x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 18, normalized size = 0.72 \begin {gather*} \log (x)+\log \left (2+e^x+x-x^2\right )+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 17, normalized size = 0.68 \begin {gather*} \log \left (-x^{2} + x + e^{x} + 2\right ) + \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.68 \begin {gather*} \log \left (-x^{2} + x + e^{x} + 2\right ) + \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.72
method | result | size |
risch | \(\ln \relax (x )+\ln \left (-x^{2}+{\mathrm e}^{x}+x +2\right )+\ln \left (\ln \relax (x )\right )\) | \(18\) |
norman | \(\ln \relax (x )+\ln \left (\ln \relax (x )\right )+\ln \left (x^{2}-x -{\mathrm e}^{x}-2\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 17, normalized size = 0.68 \begin {gather*} \log \left (-x^{2} + x + e^{x} + 2\right ) + \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.77, size = 19, normalized size = 0.76 \begin {gather*} \ln \left (\ln \relax (x)\right )+\ln \left (x^2-{\mathrm {e}}^x-x-2\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 19, normalized size = 0.76 \begin {gather*} \log {\relax (x )} + \log {\left (- x^{2} + x + e^{x} + 2 \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________