Optimal. Leaf size=29 \[ e^{-10+2 x+2 \left (-3+e^{2+x^2}-x^3\right )^2} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 2.18, antiderivative size = 149, normalized size of antiderivative = 5.14, number of steps used = 1, number of rules used = 1, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {2288} \begin {gather*} \frac {\left (6 x^7+18 x^4+x^2+4 e^{2 x^2+4} x^3-2 e^{x^2+2} \left (2 x^6+3 x^4+6 x^3\right )\right ) \exp \left (2 x^6+12 x^3+2 e^{2 x^2+4}-4 e^{x^2+2} \left (x^3+3\right )+2 x+8\right )}{6 x^5-6 e^{x^2+2} x^2+18 x^2+4 e^{2 x^2+4} x-4 e^{x^2+2} \left (x^3+3\right ) x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\exp \left (8+2 e^{4+2 x^2}+2 x+12 x^3+2 x^6-4 e^{2+x^2} \left (3+x^3\right )\right ) \left (x^2+4 e^{4+2 x^2} x^3+18 x^4+6 x^7-2 e^{2+x^2} \left (6 x^3+3 x^4+2 x^6\right )\right )}{1+4 e^{4+2 x^2} x+18 x^2-6 e^{2+x^2} x^2+6 x^5-4 e^{2+x^2} x \left (3+x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 42, normalized size = 1.45 \begin {gather*} e^{2 \left (4+e^{4+2 x^2}+x+6 x^3+x^6-2 e^{2+x^2} \left (3+x^3\right )\right )} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 43, normalized size = 1.48 \begin {gather*} x^{2} e^{\left (2 \, x^{6} + 12 \, x^{3} - 4 \, {\left (x^{3} + 3\right )} e^{\left (x^{2} + 2\right )} + 2 \, x + 2 \, e^{\left (2 \, x^{2} + 4\right )} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (6 \, x^{7} + 18 \, x^{4} + 4 \, x^{3} e^{\left (2 \, x^{2} + 4\right )} + x^{2} - 2 \, {\left (2 \, x^{6} + 3 \, x^{4} + 6 \, x^{3}\right )} e^{\left (x^{2} + 2\right )} + x\right )} e^{\left (2 \, x^{6} + 12 \, x^{3} - 4 \, {\left (x^{3} + 3\right )} e^{\left (x^{2} + 2\right )} + 2 \, x + 2 \, e^{\left (2 \, x^{2} + 4\right )} + 8\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 50, normalized size = 1.72
method | result | size |
risch | \(x^{2} {\mathrm e}^{2 x^{6}-4 \,{\mathrm e}^{x^{2}+2} x^{3}+12 x^{3}+2 \,{\mathrm e}^{2 x^{2}+4}-12 \,{\mathrm e}^{x^{2}+2}+2 x +8}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 49, normalized size = 1.69 \begin {gather*} x^{2} e^{\left (2 \, x^{6} - 4 \, x^{3} e^{\left (x^{2} + 2\right )} + 12 \, x^{3} + 2 \, x + 2 \, e^{\left (2 \, x^{2} + 4\right )} - 12 \, e^{\left (x^{2} + 2\right )} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.59, size = 54, normalized size = 1.86 \begin {gather*} x^2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-4\,x^3\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^2}\,{\mathrm {e}}^8\,{\mathrm {e}}^{-12\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^2}\,{\mathrm {e}}^{2\,x^6}\,{\mathrm {e}}^{12\,x^3}\,{\mathrm {e}}^{2\,{\mathrm {e}}^4\,{\mathrm {e}}^{2\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 33.30, size = 46, normalized size = 1.59 \begin {gather*} x^{2} e^{2 x^{6} + 12 x^{3} + 2 x + 2 \left (- 2 x^{3} - 6\right ) e^{x^{2} + 2} + 2 e^{2 x^{2} + 4} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________