Optimal. Leaf size=31 \[ -\left (1-\frac {x}{5}\right )^2+\frac {x}{3}-\frac {8 x \log (x)}{\frac {5}{x}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 53, normalized size of antiderivative = 1.71, number of steps used = 19, number of rules used = 11, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.244, Rules used = {28, 6742, 199, 203, 261, 288, 266, 43, 321, 2335, 260} \begin {gather*} -\frac {x^2}{25}-\frac {11 x}{6 \left (x^2+5\right )}-\frac {8 x^2 \log (x)}{x^2+5}-\frac {11 x^3}{30 \left (x^2+5\right )}+\frac {11 x}{10} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 43
Rule 199
Rule 203
Rule 260
Rule 261
Rule 266
Rule 288
Rule 321
Rule 2335
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=75 \int \frac {1375-3150 x+550 x^2-660 x^3+55 x^4-6 x^5-6000 x \log (x)}{\left (375+75 x^2\right )^2} \, dx\\ &=75 \int \left (\frac {11}{45 \left (5+x^2\right )^2}-\frac {14 x}{25 \left (5+x^2\right )^2}+\frac {22 x^2}{225 \left (5+x^2\right )^2}-\frac {44 x^3}{375 \left (5+x^2\right )^2}+\frac {11 x^4}{1125 \left (5+x^2\right )^2}-\frac {2 x^5}{1875 \left (5+x^2\right )^2}-\frac {16 x \log (x)}{15 \left (5+x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {2}{25} \int \frac {x^5}{\left (5+x^2\right )^2} \, dx\right )+\frac {11}{15} \int \frac {x^4}{\left (5+x^2\right )^2} \, dx+\frac {22}{3} \int \frac {x^2}{\left (5+x^2\right )^2} \, dx-\frac {44}{5} \int \frac {x^3}{\left (5+x^2\right )^2} \, dx+\frac {55}{3} \int \frac {1}{\left (5+x^2\right )^2} \, dx-42 \int \frac {x}{\left (5+x^2\right )^2} \, dx-80 \int \frac {x \log (x)}{\left (5+x^2\right )^2} \, dx\\ &=\frac {21}{5+x^2}-\frac {11 x}{6 \left (5+x^2\right )}-\frac {11 x^3}{30 \left (5+x^2\right )}-\frac {8 x^2 \log (x)}{5+x^2}-\frac {1}{25} \operatorname {Subst}\left (\int \frac {x^2}{(5+x)^2} \, dx,x,x^2\right )+\frac {11}{10} \int \frac {x^2}{5+x^2} \, dx+\frac {11}{6} \int \frac {1}{5+x^2} \, dx+\frac {11}{3} \int \frac {1}{5+x^2} \, dx-\frac {22}{5} \operatorname {Subst}\left (\int \frac {x}{(5+x)^2} \, dx,x,x^2\right )+8 \int \frac {x}{5+x^2} \, dx\\ &=\frac {11 x}{10}+\frac {21}{5+x^2}-\frac {11 x}{6 \left (5+x^2\right )}-\frac {11 x^3}{30 \left (5+x^2\right )}+\frac {11 \tan ^{-1}\left (\frac {x}{\sqrt {5}}\right )}{2 \sqrt {5}}-\frac {8 x^2 \log (x)}{5+x^2}+4 \log \left (5+x^2\right )-\frac {1}{25} \operatorname {Subst}\left (\int \left (1+\frac {25}{(5+x)^2}-\frac {10}{5+x}\right ) \, dx,x,x^2\right )-\frac {22}{5} \operatorname {Subst}\left (\int \left (-\frac {5}{(5+x)^2}+\frac {1}{5+x}\right ) \, dx,x,x^2\right )-\frac {11}{2} \int \frac {1}{5+x^2} \, dx\\ &=\frac {11 x}{10}-\frac {x^2}{25}-\frac {11 x}{6 \left (5+x^2\right )}-\frac {11 x^3}{30 \left (5+x^2\right )}-\frac {8 x^2 \log (x)}{5+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.71 \begin {gather*} \frac {1}{75} x \left (55-3 x-\frac {600 x \log (x)}{5+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 35, normalized size = 1.13 \begin {gather*} -\frac {3 \, x^{4} - 55 \, x^{3} + 600 \, x^{2} \log \relax (x) + 15 \, x^{2} - 275 \, x}{75 \, {\left (x^{2} + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 24, normalized size = 0.77 \begin {gather*} -\frac {1}{25} \, x^{2} + \frac {11}{15} \, x + \frac {40 \, \log \relax (x)}{x^{2} + 5} - 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.77
method | result | size |
default | \(-\frac {x^{2}}{25}+\frac {11 x}{15}-\frac {8 \ln \relax (x ) x^{2}}{x^{2}+5}\) | \(24\) |
risch | \(\frac {40 \ln \relax (x )}{x^{2}+5}-\frac {x^{2}}{25}+\frac {11 x}{15}-8 \ln \relax (x )\) | \(25\) |
norman | \(\frac {\frac {11 x}{3}+\frac {11 x^{3}}{15}-\frac {x^{4}}{25}-8 x^{2} \ln \relax (x )+1}{x^{2}+5}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 26, normalized size = 0.84 \begin {gather*} -\frac {1}{25} \, x^{2} + \frac {11}{15} \, x + \frac {40 \, \log \relax (x)}{x^{2} + 5} - 4 \, \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.95, size = 24, normalized size = 0.77 \begin {gather*} \frac {11\,x}{15}-8\,\ln \relax (x)-\frac {x^2}{25}+\frac {40\,\ln \relax (x)}{x^2+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 24, normalized size = 0.77 \begin {gather*} - \frac {x^{2}}{25} + \frac {11 x}{15} - 8 \log {\relax (x )} + \frac {40 \log {\relax (x )}}{x^{2} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________