Optimal. Leaf size=23 \[ \log (x)+\left (x+x^2\right ) \left (5+\log (2 x)+\log \left (e^{-1+x} x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 46, normalized size of antiderivative = 2.00, number of steps used = 10, number of rules used = 3, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {14, 2313, 2551} \begin {gather*} 5 x^2+\left (x^2+x\right ) \log (2 x)+\frac {19 x}{4}+\frac {3 \log (x)}{4}+\frac {1}{4} (2 x+1)^2 \log \left (e^{x-1} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2313
Rule 2551
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+7 x+13 x^2+x^3+x \log (2 x)+2 x^2 \log (2 x)}{x}+(1+2 x) \log \left (e^{-1+x} x\right )\right ) \, dx\\ &=\int \frac {1+7 x+13 x^2+x^3+x \log (2 x)+2 x^2 \log (2 x)}{x} \, dx+\int (1+2 x) \log \left (e^{-1+x} x\right ) \, dx\\ &=\frac {1}{4} (1+2 x)^2 \log \left (e^{-1+x} x\right )-\frac {1}{4} \int \left (5+\frac {1}{x}+8 x+4 x^2\right ) \, dx+\int \left (\frac {1+7 x+13 x^2+x^3}{x}+(1+2 x) \log (2 x)\right ) \, dx\\ &=-\frac {5 x}{4}-x^2-\frac {x^3}{3}-\frac {\log (x)}{4}+\frac {1}{4} (1+2 x)^2 \log \left (e^{-1+x} x\right )+\int \frac {1+7 x+13 x^2+x^3}{x} \, dx+\int (1+2 x) \log (2 x) \, dx\\ &=-\frac {5 x}{4}-x^2-\frac {x^3}{3}-\frac {\log (x)}{4}+\left (x+x^2\right ) \log (2 x)+\frac {1}{4} (1+2 x)^2 \log \left (e^{-1+x} x\right )-\int (1+x) \, dx+\int \left (7+\frac {1}{x}+13 x+x^2\right ) \, dx\\ &=\frac {19 x}{4}+5 x^2+\frac {3 \log (x)}{4}+\left (x+x^2\right ) \log (2 x)+\frac {1}{4} (1+2 x)^2 \log \left (e^{-1+x} x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.96 \begin {gather*} \log (x)+x (1+x) \left (5+\log (2 x)+\log \left (e^{-1+x} x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 36, normalized size = 1.57 \begin {gather*} x^{3} + 5 \, x^{2} - {\left (x^{2} + x\right )} \log \relax (2) + {\left (2 \, x^{2} + 2 \, x + 1\right )} \log \left (2 \, x\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 29, normalized size = 1.26 \begin {gather*} x^{3} + x^{2} {\left (\log \relax (2) + 5\right )} + x {\left (\log \relax (2) + 4\right )} + 2 \, {\left (x^{2} + x\right )} \log \relax (x) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.02, size = 47, normalized size = 2.04
method | result | size |
default | \(\ln \left (x \,{\mathrm e}^{x -1}\right ) x^{2}+\ln \left (x \,{\mathrm e}^{x -1}\right ) x +5 x^{2}+5 x +\frac {7}{3}+x^{2} \ln \left (2 x \right )+x \ln \left (2 x \right )+\ln \relax (x )\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 45, normalized size = 1.96 \begin {gather*} x^{2} \log \left (x e^{\left (x - 1\right )}\right ) + x^{2} \log \left (2 \, x\right ) + 5 \, x^{2} + x \log \left (x e^{\left (x - 1\right )}\right ) + x \log \left (2 \, x\right ) + 5 \, x + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.75, size = 36, normalized size = 1.57 \begin {gather*} 4\,x+\ln \relax (x)+2\,x^2\,\ln \relax (x)+x\,\ln \relax (2)+x^2\,\ln \relax (2)+2\,x\,\ln \relax (x)+5\,x^2+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 34, normalized size = 1.48 \begin {gather*} x^{3} + x^{2} \left (5 - \log {\relax (2 )}\right ) + x \left (4 - \log {\relax (2 )}\right ) + \left (2 x^{2} + 2 x\right ) \log {\left (2 x \right )} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________