3.75.23 \(\int \frac {-100 x^4+50 x^5-6 x^6+(1-2 x^2) \log (2)}{x} \, dx\)

Optimal. Leaf size=27 \[ e^5-(5-x)^2 x^4+\log (2) \left (-x^2+\log (x)\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 28, normalized size of antiderivative = 1.04, number of steps used = 2, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {14} \begin {gather*} -x^6+10 x^5-25 x^4-x^2 \log (2)+\log (2) \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-100*x^4 + 50*x^5 - 6*x^6 + (1 - 2*x^2)*Log[2])/x,x]

[Out]

-25*x^4 + 10*x^5 - x^6 - x^2*Log[2] + Log[2]*Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-100 x^3+50 x^4-6 x^5+\frac {\log (2)}{x}-2 x \log (2)\right ) \, dx\\ &=-25 x^4+10 x^5-x^6-x^2 \log (2)+\log (2) \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 30, normalized size = 1.11 \begin {gather*} -25 x^4+10 x^5-x^6-\frac {1}{2} x^2 \log (4)+\log (2) \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-100*x^4 + 50*x^5 - 6*x^6 + (1 - 2*x^2)*Log[2])/x,x]

[Out]

-25*x^4 + 10*x^5 - x^6 - (x^2*Log[4])/2 + Log[2]*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 28, normalized size = 1.04 \begin {gather*} -x^{6} + 10 \, x^{5} - 25 \, x^{4} - x^{2} \log \relax (2) + \log \relax (2) \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+1)*log(2)-6*x^6+50*x^5-100*x^4)/x,x, algorithm="fricas")

[Out]

-x^6 + 10*x^5 - 25*x^4 - x^2*log(2) + log(2)*log(x)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 29, normalized size = 1.07 \begin {gather*} -x^{6} + 10 \, x^{5} - 25 \, x^{4} - x^{2} \log \relax (2) + \log \relax (2) \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+1)*log(2)-6*x^6+50*x^5-100*x^4)/x,x, algorithm="giac")

[Out]

-x^6 + 10*x^5 - 25*x^4 - x^2*log(2) + log(2)*log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.03, size = 29, normalized size = 1.07




method result size



default \(-x^{6}+10 x^{5}-25 x^{4}-x^{2} \ln \relax (2)+\ln \relax (2) \ln \relax (x )\) \(29\)
norman \(-x^{6}+10 x^{5}-25 x^{4}-x^{2} \ln \relax (2)+\ln \relax (2) \ln \relax (x )\) \(29\)
risch \(-x^{6}+10 x^{5}-25 x^{4}-x^{2} \ln \relax (2)+\ln \relax (2) \ln \relax (x )\) \(29\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x^2+1)*ln(2)-6*x^6+50*x^5-100*x^4)/x,x,method=_RETURNVERBOSE)

[Out]

-x^6+10*x^5-25*x^4-x^2*ln(2)+ln(2)*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 28, normalized size = 1.04 \begin {gather*} -x^{6} + 10 \, x^{5} - 25 \, x^{4} - x^{2} \log \relax (2) + \log \relax (2) \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x^2+1)*log(2)-6*x^6+50*x^5-100*x^4)/x,x, algorithm="maxima")

[Out]

-x^6 + 10*x^5 - 25*x^4 - x^2*log(2) + log(2)*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 28, normalized size = 1.04 \begin {gather*} \ln \relax (2)\,\ln \relax (x)-x^2\,\ln \relax (2)-25\,x^4+10\,x^5-x^6 \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(2)*(2*x^2 - 1) + 100*x^4 - 50*x^5 + 6*x^6)/x,x)

[Out]

log(2)*log(x) - x^2*log(2) - 25*x^4 + 10*x^5 - x^6

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 26, normalized size = 0.96 \begin {gather*} - x^{6} + 10 x^{5} - 25 x^{4} - x^{2} \log {\relax (2 )} + \log {\relax (2 )} \log {\relax (x )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x**2+1)*ln(2)-6*x**6+50*x**5-100*x**4)/x,x)

[Out]

-x**6 + 10*x**5 - 25*x**4 - x**2*log(2) + log(2)*log(x)

________________________________________________________________________________________