Optimal. Leaf size=28 \[ -1+2 \left (-2+e^{\frac {3}{5 \left (-\frac {3}{4}+x\right ) \log \left (x \log ^2(2)\right )}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (72-96 x-96 x \log \left (x \log ^2(2)\right )\right )}{\left (45 x-120 x^2+80 x^3\right ) \log ^2\left (x \log ^2(2)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (72-96 x-96 x \log \left (x \log ^2(2)\right )\right )}{x \left (45-120 x+80 x^2\right ) \log ^2\left (x \log ^2(2)\right )} \, dx\\ &=\int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (72-96 x-96 x \log \left (x \log ^2(2)\right )\right )}{5 x (-3+4 x)^2 \log ^2\left (x \log ^2(2)\right )} \, dx\\ &=\frac {1}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (72-96 x-96 x \log \left (x \log ^2(2)\right )\right )}{x (-3+4 x)^2 \log ^2\left (x \log ^2(2)\right )} \, dx\\ &=\frac {1}{5} \int \frac {24 e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (3-4 x-4 x \log \left (x \log ^2(2)\right )\right )}{(3-4 x)^2 x \log ^2\left (x \log ^2(2)\right )} \, dx\\ &=\frac {24}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (3-4 x-4 x \log \left (x \log ^2(2)\right )\right )}{(3-4 x)^2 x \log ^2\left (x \log ^2(2)\right )} \, dx\\ &=\frac {24}{5} \int \left (-\frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{x (-3+4 x) \log ^2\left (x \log ^2(2)\right )}-\frac {4 e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{(-3+4 x)^2 \log \left (x \log ^2(2)\right )}\right ) \, dx\\ &=-\left (\frac {24}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{x (-3+4 x) \log ^2\left (x \log ^2(2)\right )} \, dx\right )-\frac {96}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{(-3+4 x)^2 \log \left (x \log ^2(2)\right )} \, dx\\ &=-\left (\frac {24}{5} \int \left (-\frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{3 x \log ^2\left (x \log ^2(2)\right )}+\frac {4 e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{3 (-3+4 x) \log ^2\left (x \log ^2(2)\right )}\right ) \, dx\right )-\frac {96}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{(-3+4 x)^2 \log \left (x \log ^2(2)\right )} \, dx\\ &=\frac {8}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{x \log ^2\left (x \log ^2(2)\right )} \, dx-\frac {32}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{(-3+4 x) \log ^2\left (x \log ^2(2)\right )} \, dx-\frac {96}{5} \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}}}{(-3+4 x)^2 \log \left (x \log ^2(2)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 24, normalized size = 0.86 \begin {gather*} 2 e^{\frac {12}{5 (-3+4 x) \log \left (x \log ^2(2)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 0.75 \begin {gather*} 2 \, e^{\left (\frac {12}{5 \, {\left (4 \, x - 3\right )} \log \left (x \log \relax (2)^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 27, normalized size = 0.96 \begin {gather*} 2 \, e^{\left (\frac {12}{5 \, {\left (4 \, x \log \left (x \log \relax (2)^{2}\right ) - 3 \, \log \left (x \log \relax (2)^{2}\right )\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.79
method | result | size |
risch | \(2 \,{\mathrm e}^{\frac {12}{5 \left (4 x -3\right ) \ln \left (x \ln \relax (2)^{2}\right )}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.04, size = 28, normalized size = 1.00 \begin {gather*} 2\,{\mathrm {e}}^{-\frac {12}{30\,\ln \left (\ln \relax (2)\right )+15\,\ln \relax (x)-40\,x\,\ln \left (\ln \relax (2)\right )-20\,x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 17, normalized size = 0.61 \begin {gather*} 2 e^{\frac {12}{\left (20 x - 15\right ) \log {\left (x \log {\relax (2 )}^{2} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________