Optimal. Leaf size=27 \[ \frac {\log \left (\frac {2}{x}\right )}{-1+e^3+2 x \left (2+\frac {\log (x)}{2+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 10.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-12 x-15 x^2-4 x^3+e^3 \left (-4-4 x-x^2\right )+\left (-20 x-18 x^2-4 x^3\right ) \log \left (\frac {2}{x}\right )+\left (-4 x-2 x^2-4 x \log \left (\frac {2}{x}\right )\right ) \log (x)}{4 x-28 x^2+33 x^3+56 x^4+16 x^5+e^6 \left (4 x+4 x^2+x^3\right )+e^3 \left (-8 x+24 x^2+30 x^3+8 x^4\right )+\left (-8 x^2+28 x^3+16 x^4+e^3 \left (8 x^2+4 x^3\right )\right ) \log (x)+4 x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x \log \left (\frac {2}{x}\right ) \left (10+9 x+2 x^2+2 \log (x)\right )-(2+x) \left (-2+7 x+4 x^2+e^3 (2+x)+2 x \log (x)\right )}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx\\ &=\int \left (\frac {2 (2+x) \left (-1+e^3-x-2 x^2\right ) \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2}+\frac {2+x+2 \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {(2+x) \left (-1+e^3-x-2 x^2\right ) \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2} \, dx+\int \frac {2+x+2 \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )} \, dx\\ &=2 \int \frac {(2+x) \left (-1+e^3-x-2 x^2\right ) \log \left (\frac {2}{x}\right )}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx+\int \frac {2+x+2 \log \left (\frac {2}{x}\right )}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )} \, dx\\ &=2 \int \left (-\frac {3 \left (1-\frac {e^3}{3}\right ) \log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2}+\frac {2 \left (-1+e^3\right ) \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2}-\frac {5 x \log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2}-\frac {2 x^2 \log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2}\right ) \, dx+\int \left (\frac {1}{2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)}+\frac {2}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )}+\frac {2 \log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {1}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )} \, dx+2 \int \frac {\log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )} \, dx-4 \int \frac {x^2 \log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2} \, dx-10 \int \frac {x \log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2} \, dx-\left (4 \left (1-e^3\right )\right ) \int \frac {\log \left (\frac {2}{x}\right )}{x \left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2} \, dx-\left (2 \left (3-e^3\right )\right ) \int \frac {\log \left (\frac {2}{x}\right )}{\left (2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)\right )^2} \, dx+\int \frac {1}{2 \left (1-e^3\right )-7 \left (1+\frac {e^3}{7}\right ) x-4 x^2-2 x \log (x)} \, dx\\ &=2 \int \frac {1}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )} \, dx+2 \int \frac {\log \left (\frac {2}{x}\right )}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )} \, dx-4 \int \frac {x^2 \log \left (\frac {2}{x}\right )}{\left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx-10 \int \frac {x \log \left (\frac {2}{x}\right )}{\left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx-\left (4 \left (1-e^3\right )\right ) \int \frac {\log \left (\frac {2}{x}\right )}{x \left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx-\left (2 \left (3-e^3\right )\right ) \int \frac {\log \left (\frac {2}{x}\right )}{\left (2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)\right )^2} \, dx+\int \frac {1}{2-7 x-4 x^2-e^3 (2+x)-2 x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.61, size = 64, normalized size = 2.37 \begin {gather*} \frac {-2+2 e^3+7 x+e^3 x+4 x^2+2 (2+x) \log \left (\frac {2}{x}\right )+2 x \log (x)}{2 \left (-2+7 x+4 x^2+e^3 (2+x)+2 x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 63, normalized size = 2.33 \begin {gather*} \frac {4 \, x^{2} + {\left (x + 2\right )} e^{3} + 2 \, x \log \relax (2) + 7 \, x + 4 \, \log \left (\frac {2}{x}\right ) - 2}{2 \, {\left (4 \, x^{2} + {\left (x + 2\right )} e^{3} + 2 \, x \log \relax (2) - 2 \, x \log \left (\frac {2}{x}\right ) + 7 \, x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 58, normalized size = 2.15 \begin {gather*} \frac {4 \, x^{2} + x e^{3} + 2 \, x \log \relax (2) + 7 \, x + 2 \, e^{3} + 4 \, \log \relax (2) - 4 \, \log \relax (x) - 2}{2 \, {\left (4 \, x^{2} + x e^{3} + 2 \, x \log \relax (x) + 7 \, x + 2 \, e^{3} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.40, size = 79, normalized size = 2.93
method | result | size |
risch | \(-\frac {1}{x}+\frac {-4+2 x^{2} \ln \relax (2)+x^{2} {\mathrm e}^{3}+4 x^{3}+4 x \ln \relax (2)+4 x \,{\mathrm e}^{3}+15 x^{2}+4 \,{\mathrm e}^{3}+12 x}{2 x \left (2 x \ln \relax (x )+x \,{\mathrm e}^{3}+4 x^{2}+2 \,{\mathrm e}^{3}+7 x -2\right )}\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 55, normalized size = 2.04 \begin {gather*} \frac {4 \, x^{2} + x {\left (e^{3} + 2 \, \log \relax (2) + 7\right )} + 2 \, e^{3} + 4 \, \log \relax (2) - 4 \, \log \relax (x) - 2}{2 \, {\left (4 \, x^{2} + x {\left (e^{3} + 7\right )} + 2 \, x \log \relax (x) + 2 \, e^{3} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {12\,x+\ln \relax (x)\,\left (4\,x+4\,x\,\ln \left (\frac {2}{x}\right )+2\,x^2\right )+\ln \left (\frac {2}{x}\right )\,\left (4\,x^3+18\,x^2+20\,x\right )+{\mathrm {e}}^3\,\left (x^2+4\,x+4\right )+15\,x^2+4\,x^3-4}{4\,x+{\mathrm {e}}^6\,\left (x^3+4\,x^2+4\,x\right )+4\,x^3\,{\ln \relax (x)}^2+{\mathrm {e}}^3\,\left (8\,x^4+30\,x^3+24\,x^2-8\,x\right )-28\,x^2+33\,x^3+56\,x^4+16\,x^5+\ln \relax (x)\,\left ({\mathrm {e}}^3\,\left (4\,x^3+8\,x^2\right )-8\,x^2+28\,x^3+16\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 88, normalized size = 3.26 \begin {gather*} \frac {4 x^{3} + 2 x^{2} \log {\relax (2 )} + 15 x^{2} + x^{2} e^{3} + 4 x \log {\relax (2 )} + 12 x + 4 x e^{3} - 4 + 4 e^{3}}{8 x^{3} + 4 x^{2} \log {\relax (x )} + 14 x^{2} + 2 x^{2} e^{3} - 4 x + 4 x e^{3}} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________