Optimal. Leaf size=20 \[ x^4 \left (-1+2 x+e^{21-e^x} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-e^x} \left (5 e^{21} x^4-e^{21+x} x^5+e^{e^x} \left (-4 x^3+10 x^4\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5 e^{21-e^x} x^4-e^{21-e^x+x} x^5+2 x^3 (-2+5 x)\right ) \, dx\\ &=2 \int x^3 (-2+5 x) \, dx+5 \int e^{21-e^x} x^4 \, dx-\int e^{21-e^x+x} x^5 \, dx\\ &=2 \int \left (-2 x^3+5 x^4\right ) \, dx+5 \int e^{21-e^x} x^4 \, dx-\int e^{21-e^x+x} x^5 \, dx\\ &=-x^4+2 x^5+5 \int e^{21-e^x} x^4 \, dx-\int e^{21-e^x+x} x^5 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 19, normalized size = 0.95 \begin {gather*} x^4 \left (-1+\left (2+e^{21-e^x}\right ) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.22, size = 28, normalized size = 1.40 \begin {gather*} {\left (x^{5} e^{21} + {\left (2 \, x^{5} - x^{4}\right )} e^{\left (e^{x}\right )}\right )} e^{\left (-e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 22, normalized size = 1.10 \begin {gather*} x^{5} e^{\left (-e^{x} + 21\right )} + 2 \, x^{5} - x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 1.15
method | result | size |
risch | \(2 x^{5}-x^{4}+x^{5} {\mathrm e}^{21-{\mathrm e}^{x}}\) | \(23\) |
norman | \(\left ({\mathrm e}^{21} x^{5}-x^{4} {\mathrm e}^{{\mathrm e}^{x}}+2 x^{5} {\mathrm e}^{{\mathrm e}^{x}}\right ) {\mathrm e}^{-{\mathrm e}^{x}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 22, normalized size = 1.10 \begin {gather*} x^{5} e^{\left (-e^{x} + 21\right )} + 2 \, x^{5} - x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 22, normalized size = 1.10 \begin {gather*} 2\,x^5-x^4+x^5\,{\mathrm {e}}^{21}\,{\mathrm {e}}^{-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.95 \begin {gather*} 2 x^{5} + x^{5} e^{21} e^{- e^{x}} - x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________