Optimal. Leaf size=32 \[ x-\frac {4 \left (4+e^4-x\right )}{-e^{x-e^2 x}+x}+16 \log (x) \]
________________________________________________________________________________________
Rubi [F] time = 6.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x+4 e^4 x+16 x^2+x^3+e^{2 x-2 e^2 x} (16+x)+e^{x-e^2 x} \left (-52 x+2 x^2+e^4 \left (-4 x+4 e^2 x\right )+e^2 \left (16 x-4 x^2\right )\right )}{e^{2 x-2 e^2 x} x-2 e^{x-e^2 x} x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (16+4 e^4\right ) x+16 x^2+x^3+e^{2 x-2 e^2 x} (16+x)+e^{x-e^2 x} \left (-52 x+2 x^2+e^4 \left (-4 x+4 e^2 x\right )+e^2 \left (16 x-4 x^2\right )\right )}{e^{2 x-2 e^2 x} x-2 e^{x-e^2 x} x^2+x^3} \, dx\\ &=\int \frac {e^{2 e^2 x} \left (\left (16+4 e^4\right ) x+16 x^2+x^3+e^{2 x-2 e^2 x} (16+x)+e^{x-e^2 x} \left (-52 x+2 x^2+e^4 \left (-4 x+4 e^2 x\right )+e^2 \left (16 x-4 x^2\right )\right )\right )}{x \left (e^x-e^{e^2 x} x\right )^2} \, dx\\ &=\int \left (\frac {16+x}{x}+4 e^{2 e^2 x-\left (1+e^2\right ) x} \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right )+\frac {4 e^{-x+2 e^2 x} x \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right )}{e^x-e^{e^2 x} x}+\frac {4 e^{2 e^2 x} \left (4+e^4-\left (5-4 e^2+e^4-e^6\right ) x+\left (1-e^2\right ) x^2\right )}{\left (e^x-e^{e^2 x} x\right )^2}\right ) \, dx\\ &=4 \int e^{2 e^2 x-\left (1+e^2\right ) x} \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right ) \, dx+4 \int \frac {e^{-x+2 e^2 x} x \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right )}{e^x-e^{e^2 x} x} \, dx+4 \int \frac {e^{2 e^2 x} \left (4+e^4-\left (5-4 e^2+e^4-e^6\right ) x+\left (1-e^2\right ) x^2\right )}{\left (e^x-e^{e^2 x} x\right )^2} \, dx+\int \frac {16+x}{x} \, dx\\ &=4 \int e^{-\left (\left (1-e^2\right ) x\right )} \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right ) \, dx+4 \int \frac {e^{-\left (\left (1-2 e^2\right ) x\right )} x \left (-5+4 e^2-e^4+e^6+\left (1-e^2\right ) x\right )}{e^x-e^{e^2 x} x} \, dx+4 \int \left (\frac {4 e^{2 e^2 x} \left (1+\frac {e^4}{4}\right )}{\left (e^x-e^{e^2 x} x\right )^2}+\frac {e^{2 e^2 x} \left (-5+4 e^2-e^4+e^6\right ) x}{\left (-e^x+e^{e^2 x} x\right )^2}-\frac {(-1+e) e^{2 e^2 x} (1+e) x^2}{\left (-e^x+e^{e^2 x} x\right )^2}\right ) \, dx+\int \left (1+\frac {16}{x}\right ) \, dx\\ &=x+\frac {4 e^{-\left (\left (1-e^2\right ) x\right )} \left (5-4 e^2+e^4-e^6-\left (1-e^2\right ) x\right )}{1-e^2}+16 \log (x)+4 \int e^{\left (-1+e^2\right ) x} \, dx+4 \int \left (-\frac {e^{-\left (\left (1-2 e^2\right ) x\right )} \left (-5+4 e^2-e^4+e^6\right ) x}{-e^x+e^{e^2 x} x}+\frac {(-1+e) e^{-\left (\left (1-2 e^2\right ) x\right )} (1+e) x^2}{-e^x+e^{e^2 x} x}\right ) \, dx-(4 (-1+e) (1+e)) \int \frac {e^{2 e^2 x} x^2}{\left (-e^x+e^{e^2 x} x\right )^2} \, dx+\left (4 \left (4+e^4\right )\right ) \int \frac {e^{2 e^2 x}}{\left (e^x-e^{e^2 x} x\right )^2} \, dx-\left (4 \left (5-4 e^2+e^4-e^6\right )\right ) \int \frac {e^{2 e^2 x} x}{\left (-e^x+e^{e^2 x} x\right )^2} \, dx\\ &=-\frac {4 e^{-\left (\left (1-e^2\right ) x\right )}}{1-e^2}+x+\frac {4 e^{-\left (\left (1-e^2\right ) x\right )} \left (5-4 e^2+e^4-e^6-\left (1-e^2\right ) x\right )}{1-e^2}+16 \log (x)-(4 (-1+e) (1+e)) \int \frac {e^{2 e^2 x} x^2}{\left (-e^x+e^{e^2 x} x\right )^2} \, dx+(4 (-1+e) (1+e)) \int \frac {e^{-\left (\left (1-2 e^2\right ) x\right )} x^2}{-e^x+e^{e^2 x} x} \, dx+\left (4 \left (4+e^4\right )\right ) \int \frac {e^{2 e^2 x}}{\left (e^x-e^{e^2 x} x\right )^2} \, dx-\left (4 \left (5-4 e^2+e^4-e^6\right )\right ) \int \frac {e^{2 e^2 x} x}{\left (-e^x+e^{e^2 x} x\right )^2} \, dx+\left (4 \left (5-4 e^2+e^4-e^6\right )\right ) \int \frac {e^{-\left (\left (1-2 e^2\right ) x\right )} x}{-e^x+e^{e^2 x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 49, normalized size = 1.53 \begin {gather*} -\frac {4 \left (4+e^4\right )}{x}+x+\frac {4 e^x \left (-4-e^4+x\right )}{x \left (-e^x+e^{e^2 x} x\right )}+16 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 54, normalized size = 1.69 \begin {gather*} \frac {x^{2} - x e^{\left (-x e^{2} + x\right )} + 16 \, {\left (x - e^{\left (-x e^{2} + x\right )}\right )} \log \relax (x) + 4 \, x - 4 \, e^{4} - 16}{x - e^{\left (-x e^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 55, normalized size = 1.72 \begin {gather*} \frac {x^{2} - x e^{\left (-x e^{2} + x\right )} + 16 \, x \log \relax (x) - 16 \, e^{\left (-x e^{2} + x\right )} \log \relax (x) + 4 \, x - 4 \, e^{4} - 16}{x - e^{\left (-x e^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 30, normalized size = 0.94
method | result | size |
risch | \(x +16 \ln \relax (x )-\frac {4 \left (4-x +{\mathrm e}^{4}\right )}{x -{\mathrm e}^{-\left ({\mathrm e}^{2}-1\right ) x}}\) | \(30\) |
norman | \(\frac {x^{2}+4 \,{\mathrm e}^{-{\mathrm e}^{2} x +x}-x \,{\mathrm e}^{-{\mathrm e}^{2} x +x}-16-4 \,{\mathrm e}^{4}}{x -{\mathrm e}^{-{\mathrm e}^{2} x +x}}+16 \ln \relax (x )\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 43, normalized size = 1.34 \begin {gather*} \frac {{\left (x^{2} - 4 \, e^{4} - 16\right )} e^{\left (x e^{2}\right )} - {\left (x - 4\right )} e^{x}}{x e^{\left (x e^{2}\right )} - e^{x}} + 16 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 45, normalized size = 1.41 \begin {gather*} 16\,\ln \relax (x)-\frac {4\,{\mathrm {e}}^4-4\,x+x\,{\mathrm {e}}^{x-x\,{\mathrm {e}}^2}-x^2+16}{x-{\mathrm {e}}^{x-x\,{\mathrm {e}}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 0.81 \begin {gather*} x + 16 \log {\relax (x )} + \frac {- 4 x + 16 + 4 e^{4}}{- x + e^{- x e^{2} + x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________