3.73.90 \(\int e^{5+3 e^{-e^4+x} x-4 x^2} (-8 x+e^{-e^4+x} (3+3 x)) \, dx\)

Optimal. Leaf size=27 \[ -5+e^{5-x^2-3 x \left (-e^{-e^4+x}+x\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 21, normalized size of antiderivative = 0.78, number of steps used = 1, number of rules used = 1, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6706} \begin {gather*} e^{-4 x^2+3 e^{x-e^4} x+5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(5 + 3*E^(-E^4 + x)*x - 4*x^2)*(-8*x + E^(-E^4 + x)*(3 + 3*x)),x]

[Out]

E^(5 + 3*E^(-E^4 + x)*x - 4*x^2)

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=e^{5+3 e^{-e^4+x} x-4 x^2}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 21, normalized size = 0.78 \begin {gather*} e^{5+3 e^{-e^4+x} x-4 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(5 + 3*E^(-E^4 + x)*x - 4*x^2)*(-8*x + E^(-E^4 + x)*(3 + 3*x)),x]

[Out]

E^(5 + 3*E^(-E^4 + x)*x - 4*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 18, normalized size = 0.67 \begin {gather*} e^{\left (-4 \, x^{2} + 3 \, x e^{\left (x - e^{4}\right )} + 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x+3)*exp(-exp(2)^2+x)-8*x)*exp(3*x*exp(-exp(2)^2+x)-4*x^2+5),x, algorithm="fricas")

[Out]

e^(-4*x^2 + 3*x*e^(x - e^4) + 5)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 18, normalized size = 0.67 \begin {gather*} e^{\left (-4 \, x^{2} + 3 \, x e^{\left (x - e^{4}\right )} + 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x+3)*exp(-exp(2)^2+x)-8*x)*exp(3*x*exp(-exp(2)^2+x)-4*x^2+5),x, algorithm="giac")

[Out]

e^(-4*x^2 + 3*x*e^(x - e^4) + 5)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 19, normalized size = 0.70




method result size



risch \({\mathrm e}^{3 \,{\mathrm e}^{x -{\mathrm e}^{4}} x -4 x^{2}+5}\) \(19\)
norman \({\mathrm e}^{3 \,{\mathrm e}^{x -{\mathrm e}^{4}} x -4 x^{2}+5}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3*x+3)*exp(-exp(2)^2+x)-8*x)*exp(3*x*exp(-exp(2)^2+x)-4*x^2+5),x,method=_RETURNVERBOSE)

[Out]

exp(3*exp(x-exp(4))*x-4*x^2+5)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 18, normalized size = 0.67 \begin {gather*} e^{\left (-4 \, x^{2} + 3 \, x e^{\left (x - e^{4}\right )} + 5\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x+3)*exp(-exp(2)^2+x)-8*x)*exp(3*x*exp(-exp(2)^2+x)-4*x^2+5),x, algorithm="maxima")

[Out]

e^(-4*x^2 + 3*x*e^(x - e^4) + 5)

________________________________________________________________________________________

mupad [B]  time = 0.08, size = 20, normalized size = 0.74 \begin {gather*} {\mathrm {e}}^{3\,x\,{\mathrm {e}}^{-{\mathrm {e}}^4}\,{\mathrm {e}}^x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-4\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(3*x*exp(x - exp(4)) - 4*x^2 + 5)*(8*x - exp(x - exp(4))*(3*x + 3)),x)

[Out]

exp(3*x*exp(-exp(4))*exp(x))*exp(5)*exp(-4*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 17, normalized size = 0.63 \begin {gather*} e^{- 4 x^{2} + 3 x e^{x - e^{4}} + 5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3*x+3)*exp(-exp(2)**2+x)-8*x)*exp(3*x*exp(-exp(2)**2+x)-4*x**2+5),x)

[Out]

exp(-4*x**2 + 3*x*exp(x - exp(4)) + 5)

________________________________________________________________________________________