Optimal. Leaf size=22 \[ \frac {4}{e^2-12 x}+\frac {3}{x^2}+\frac {4 x}{3} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {1594, 27, 12, 1620} \begin {gather*} \frac {3}{x^2}+\frac {4 x}{3}+\frac {4}{e^2-12 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2592 x^2+144 x^3+576 x^5+e^4 \left (-18+4 x^3\right )+e^2 \left (432 x-96 x^4\right )}{x^3 \left (3 e^4-72 e^2 x+432 x^2\right )} \, dx\\ &=\int \frac {-2592 x^2+144 x^3+576 x^5+e^4 \left (-18+4 x^3\right )+e^2 \left (432 x-96 x^4\right )}{3 \left (e^2-12 x\right )^2 x^3} \, dx\\ &=\frac {1}{3} \int \frac {-2592 x^2+144 x^3+576 x^5+e^4 \left (-18+4 x^3\right )+e^2 \left (432 x-96 x^4\right )}{\left (e^2-12 x\right )^2 x^3} \, dx\\ &=\frac {1}{3} \int \left (4+\frac {144}{\left (e^2-12 x\right )^2}-\frac {18}{x^3}\right ) \, dx\\ &=\frac {4}{e^2-12 x}+\frac {3}{x^2}+\frac {4 x}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.27 \begin {gather*} \frac {2}{3} \left (\frac {9}{2 x^2}+2 x-\frac {6}{-e^2+12 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 42, normalized size = 1.91 \begin {gather*} \frac {48 \, x^{4} - 12 \, x^{2} - {\left (4 \, x^{3} + 9\right )} e^{2} + 108 \, x}{3 \, {\left (12 \, x^{3} - x^{2} e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.36
method | result | size |
risch | \(\frac {4 x}{3}+\frac {4 x^{2}+3 \,{\mathrm e}^{2}-36 x}{x^{2} \left (-12 x +{\mathrm e}^{2}\right )}\) | \(30\) |
norman | \(\frac {\left (\frac {{\mathrm e}^{4}}{9}+4\right ) x^{2}-36 x -16 x^{4}+3 \,{\mathrm e}^{2}}{x^{2} \left (-12 x +{\mathrm e}^{2}\right )}\) | \(38\) |
gosper | \(\frac {x^{2} {\mathrm e}^{4}-144 x^{4}+36 x^{2}+27 \,{\mathrm e}^{2}-324 x}{9 x^{2} \left (-12 x +{\mathrm e}^{2}\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 34, normalized size = 1.55 \begin {gather*} \frac {4}{3} \, x - \frac {4 \, x^{2} - 36 \, x + 3 \, e^{2}}{12 \, x^{3} - x^{2} e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 32, normalized size = 1.45 \begin {gather*} \frac {4\,x}{3}-\frac {4\,x^2-36\,x+3\,{\mathrm {e}}^2}{x^2\,\left (12\,x-{\mathrm {e}}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 29, normalized size = 1.32 \begin {gather*} \frac {4 x}{3} + \frac {- 4 x^{2} + 36 x - 3 e^{2}}{12 x^{3} - x^{2} e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________