Optimal. Leaf size=28 \[ \frac {(-1+2 x)^2}{2 x}+\frac {-1-\frac {16 x^2}{25}}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 21, normalized size of antiderivative = 0.75, number of steps used = 4, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {1593, 1586, 14} \begin {gather*} -\frac {16 x^2}{25 e^4}+2 x+\frac {1}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 1586
Rule 1593
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+84 x^2+64 x^4+\frac {64 x^3 \left (-25-16 x^2\right )}{25 e^4}}{x^2 \left (50+32 x^2\right )} \, dx\\ &=\int \frac {-\frac {1}{2}+2 x^2-\frac {32 x^3}{25 e^4}}{x^2} \, dx\\ &=\int \left (2-\frac {1}{2 x^2}-\frac {32 x}{25 e^4}\right ) \, dx\\ &=\frac {1}{2 x}+2 x-\frac {16 x^2}{25 e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{2 x}+2 x-\frac {16 x^2}{25 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 24, normalized size = 0.86 \begin {gather*} -\frac {{\left (32 \, x^{3} - 25 \, {\left (4 \, x^{2} + 1\right )} e^{4}\right )} e^{\left (-4\right )}}{50 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 23, normalized size = 0.82 \begin {gather*} -\frac {2}{25} \, {\left (8 \, x^{2} e^{4} - 25 \, x e^{8}\right )} e^{\left (-8\right )} + \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 17, normalized size = 0.61
method | result | size |
default | \(2 x +\frac {1}{2 x}-\frac {16 \,{\mathrm e}^{-4} x^{2}}{25}\) | \(17\) |
risch | \(2 x +\frac {1}{2 x}-\frac {16 \,{\mathrm e}^{-4} x^{2}}{25}\) | \(17\) |
norman | \(\frac {\frac {1}{2}+2 x^{2}-\frac {16 \,{\mathrm e}^{-4} x^{3}}{25}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.75 \begin {gather*} -\frac {2}{25} \, {\left (8 \, x^{2} - 25 \, x e^{4}\right )} e^{\left (-4\right )} + \frac {1}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.26, size = 19, normalized size = 0.68 \begin {gather*} \frac {-32\,{\mathrm {e}}^{-4}\,x^3+100\,x^2+25}{50\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 0.79 \begin {gather*} \frac {- 32 x^{2} + 100 x e^{4} + \frac {25 e^{4}}{x}}{50 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________