Optimal. Leaf size=23 \[ \log (2 x)-\frac {1296 \left (x+\log \left (x^2\right )\right )}{5 x (1+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 16, number of rules used = 10, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {1594, 27, 12, 6742, 44, 43, 2357, 2304, 2314, 31} \begin {gather*} -\frac {1296 \log \left (x^2\right )}{5 x}-\frac {1296 x \log \left (x^2\right )}{5 (x+1)}-\frac {1296}{5 (x+1)}+\frac {2597 \log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 43
Rule 44
Rule 1594
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2592-2587 x+1306 x^2+5 x^3+(1296+2592 x) \log \left (x^2\right )}{x^2 \left (5+10 x+5 x^2\right )} \, dx\\ &=\int \frac {-2592-2587 x+1306 x^2+5 x^3+(1296+2592 x) \log \left (x^2\right )}{5 x^2 (1+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {-2592-2587 x+1306 x^2+5 x^3+(1296+2592 x) \log \left (x^2\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {1306}{(1+x)^2}-\frac {2592}{x^2 (1+x)^2}-\frac {2587}{x (1+x)^2}+\frac {5 x}{(1+x)^2}+\frac {1296 (1+2 x) \log \left (x^2\right )}{x^2 (1+x)^2}\right ) \, dx\\ &=-\frac {1306}{5 (1+x)}+\frac {1296}{5} \int \frac {(1+2 x) \log \left (x^2\right )}{x^2 (1+x)^2} \, dx-\frac {2587}{5} \int \frac {1}{x (1+x)^2} \, dx-\frac {2592}{5} \int \frac {1}{x^2 (1+x)^2} \, dx+\int \frac {x}{(1+x)^2} \, dx\\ &=-\frac {1306}{5 (1+x)}+\frac {1296}{5} \int \left (\frac {\log \left (x^2\right )}{x^2}-\frac {\log \left (x^2\right )}{(1+x)^2}\right ) \, dx-\frac {2587}{5} \int \left (\frac {1}{-1-x}+\frac {1}{x}-\frac {1}{(1+x)^2}\right ) \, dx-\frac {2592}{5} \int \left (\frac {1}{x^2}-\frac {2}{x}+\frac {1}{(1+x)^2}+\frac {2}{1+x}\right ) \, dx+\int \left (-\frac {1}{(1+x)^2}+\frac {1}{1+x}\right ) \, dx\\ &=\frac {2592}{5 x}-\frac {1296}{5 (1+x)}+\frac {2597 \log (x)}{5}-\frac {2592}{5} \log (1+x)+\frac {1296}{5} \int \frac {\log \left (x^2\right )}{x^2} \, dx-\frac {1296}{5} \int \frac {\log \left (x^2\right )}{(1+x)^2} \, dx\\ &=-\frac {1296}{5 (1+x)}+\frac {2597 \log (x)}{5}-\frac {1296 \log \left (x^2\right )}{5 x}-\frac {1296 x \log \left (x^2\right )}{5 (1+x)}-\frac {2592}{5} \log (1+x)+\frac {2592}{5} \int \frac {1}{1+x} \, dx\\ &=-\frac {1296}{5 (1+x)}+\frac {2597 \log (x)}{5}-\frac {1296 \log \left (x^2\right )}{5 x}-\frac {1296 x \log \left (x^2\right )}{5 (1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.09 \begin {gather*} \frac {1}{5} \left (5 \log (x)-\frac {1296 \left (x+\log \left (x^2\right )\right )}{x (1+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 28, normalized size = 1.22 \begin {gather*} \frac {{\left (5 \, x^{2} + 5 \, x - 2592\right )} \log \left (x^{2}\right ) - 2592 \, x}{10 \, {\left (x^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 1.17 \begin {gather*} \frac {1296}{5} \, {\left (\frac {1}{x + 1} - \frac {1}{x}\right )} \log \left (x^{2}\right ) - \frac {1296}{5 \, {\left (x + 1\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 1.00
method | result | size |
norman | \(\frac {-\frac {1296 x}{5}-\frac {1296 \ln \left (x^{2}\right )}{5}}{\left (x +1\right ) x}+\ln \relax (x )\) | \(23\) |
risch | \(-\frac {1296 \ln \left (x^{2}\right )}{5 x \left (x +1\right )}+\frac {5 x \ln \relax (x )+5 \ln \relax (x )-1296}{5 x +5}\) | \(34\) |
default | \(\frac {2592}{5 x}+\ln \relax (x )-\frac {1296}{5 \left (x +1\right )}+\frac {-2592-2592 x -1296 \ln \left (x^{2}\right )}{5 x \left (x +1\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 38, normalized size = 1.65 \begin {gather*} \frac {2592 \, {\left (2 \, x + 1\right )}}{5 \, {\left (x^{2} + x\right )}} - \frac {2592 \, {\left (x + \log \relax (x) + 1\right )}}{5 \, {\left (x^{2} + x\right )}} - \frac {3888}{5 \, {\left (x + 1\right )}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 27, normalized size = 1.17 \begin {gather*} \frac {\ln \left (x^2\right )}{2}-\frac {\frac {1296\,x}{5}+\frac {1296\,\ln \left (x^2\right )}{5}}{x\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 1.04 \begin {gather*} \log {\relax (x )} - \frac {1296 \log {\left (x^{2} \right )}}{5 x^{2} + 5 x} - \frac {1296}{5 x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________