Optimal. Leaf size=25 \[ \frac {e^{-2 e^{3-x^2}} x^2}{(26-\log (x))^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 e^{3-x^2}} \left (-54 x-104 e^{3-x^2} x^3+\left (2 x+4 e^{3-x^2} x^3\right ) \log (x)\right )}{-17576+2028 \log (x)-78 \log ^2(x)+\log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 e^{3-x^2}} \left (54 x+104 e^{3-x^2} x^3-\left (2 x+4 e^{3-x^2} x^3\right ) \log (x)\right )}{(26-\log (x))^3} \, dx\\ &=\int \left (\frac {2 e^{-2 e^{3-x^2}} x (-27+\log (x))}{(-26+\log (x))^3}+\frac {4 e^{3-2 e^{3-x^2}-x^2} x^3}{(-26+\log (x))^2}\right ) \, dx\\ &=2 \int \frac {e^{-2 e^{3-x^2}} x (-27+\log (x))}{(-26+\log (x))^3} \, dx+4 \int \frac {e^{3-2 e^{3-x^2}-x^2} x^3}{(-26+\log (x))^2} \, dx\\ &=2 \int \left (-\frac {e^{-2 e^{3-x^2}} x}{(-26+\log (x))^3}+\frac {e^{-2 e^{3-x^2}} x}{(-26+\log (x))^2}\right ) \, dx+4 \int \frac {e^{3-2 e^{3-x^2}-x^2} x^3}{(-26+\log (x))^2} \, dx\\ &=-\left (2 \int \frac {e^{-2 e^{3-x^2}} x}{(-26+\log (x))^3} \, dx\right )+2 \int \frac {e^{-2 e^{3-x^2}} x}{(-26+\log (x))^2} \, dx+4 \int \frac {e^{3-2 e^{3-x^2}-x^2} x^3}{(-26+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 23, normalized size = 0.92 \begin {gather*} \frac {e^{-2 e^{3-x^2}} x^2}{(-26+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 27, normalized size = 1.08 \begin {gather*} \frac {x^{2} e^{\left (-2 \, e^{\left (-x^{2} + 3\right )}\right )}}{\log \relax (x)^{2} - 52 \, \log \relax (x) + 676} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (52 \, x^{3} e^{\left (-x^{2} + 3\right )} - {\left (2 \, x^{3} e^{\left (-x^{2} + 3\right )} + x\right )} \log \relax (x) + 27 \, x\right )} e^{\left (-2 \, e^{\left (-x^{2} + 3\right )}\right )}}{\log \relax (x)^{3} - 78 \, \log \relax (x)^{2} + 2028 \, \log \relax (x) - 17576}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.88
method | result | size |
risch | \(\frac {x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{-x^{2}+3}}}{\left (-26+\ln \relax (x )\right )^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left (52 \, x^{3} e^{\left (-x^{2} + 3\right )} - {\left (2 \, x^{3} e^{\left (-x^{2} + 3\right )} + x\right )} \log \relax (x) + 27 \, x\right )} e^{\left (-2 \, e^{\left (-x^{2} + 3\right )}\right )}}{\log \relax (x)^{3} - 78 \, \log \relax (x)^{2} + 2028 \, \log \relax (x) - 17576}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^3\,{\mathrm {e}}^{-x^2}}}{{\left (\ln \relax (x)-26\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 24, normalized size = 0.96 \begin {gather*} \frac {x^{2} e^{- 2 e^{3 - x^{2}}}}{\log {\relax (x )}^{2} - 52 \log {\relax (x )} + 676} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________