Optimal. Leaf size=15 \[ 2 e^{-10+e^3+e^{20 x}} x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 2288} \begin {gather*} 2 e^{e^{20 x}-10+e^3} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int e^{-10+e^3+e^{20 x}} \left (1+20 e^{20 x} x\right ) \, dx\\ &=2 e^{-10+e^3+e^{20 x}} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} 2 e^{-10+e^3+e^{20 x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 13, normalized size = 0.87 \begin {gather*} x e^{\left (e^{3} + e^{\left (20 \, x\right )} + \log \relax (2) - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 12, normalized size = 0.80 \begin {gather*} 2 \, x e^{\left (e^{3} + e^{\left (20 \, x\right )} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 0.87
method | result | size |
risch | \(2 \,{\mathrm e}^{{\mathrm e}^{20 x}-10+{\mathrm e}^{3}} x\) | \(13\) |
norman | \({\mathrm e}^{{\mathrm e}^{20 x}+\ln \relax (2)+{\mathrm e}^{3}-10} x\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x e^{\left (e^{3} + e^{\left (20 \, x\right )} - 10\right )} + \frac {1}{10} \, {\rm Ei}\left (e^{\left (20 \, x\right )}\right ) e^{\left (e^{3} - 10\right )} - 2 \, \int e^{\left (e^{3} + e^{\left (20 \, x\right )} - 10\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 13, normalized size = 0.87 \begin {gather*} 2\,x\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{{\mathrm {e}}^{20\,x}}\,{\mathrm {e}}^{{\mathrm {e}}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.93 \begin {gather*} 2 x e^{e^{20 x} - 10 + e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________