Optimal. Leaf size=27 \[ e^{-x+\frac {x \left (5+x+(4-2 x-\log (x))^2\right )}{-3+x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {21 x-15 x^2+4 x^3+\left (-8 x+4 x^2\right ) \log (x)+x \log ^2(x)}{-3+x}\right ) \left (-48+76 x-48 x^2+8 x^3+\left (18-22 x+4 x^2\right ) \log (x)-3 \log ^2(x)\right )}{9-6 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-x+\frac {21 x-15 x^2+4 x^3+\left (-8 x+4 x^2\right ) \log (x)+x \log ^2(x)}{-3+x}\right ) \left (-48+76 x-48 x^2+8 x^3+\left (18-22 x+4 x^2\right ) \log (x)-3 \log ^2(x)\right )}{(-3+x)^2} \, dx\\ &=\int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \left (-48+76 x-48 x^2+8 x^3+\left (18-22 x+4 x^2\right ) \log (x)-3 \log ^2(x)\right )}{(3-x)^2} \, dx\\ &=\int \left (-\frac {48 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2}+\frac {76 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x}{(-3+x)^2}-\frac {48 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x^2}{(-3+x)^2}+\frac {8 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x^3}{(-3+x)^2}+\frac {2 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) (-1+x) (-9+2 x) \log (x)}{(-3+x)^2}-\frac {3 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log ^2(x)}{(-3+x)^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) (-1+x) (-9+2 x) \log (x)}{(-3+x)^2} \, dx-3 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log ^2(x)}{(-3+x)^2} \, dx+8 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x^3}{(-3+x)^2} \, dx-48 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx-48 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x^2}{(-3+x)^2} \, dx+76 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x}{(-3+x)^2} \, dx\\ &=2 \int \left (2 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x)-\frac {6 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x)}{(-3+x)^2}+\frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x)}{-3+x}\right ) \, dx-3 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log ^2(x)}{(-3+x)^2} \, dx+8 \int \left (6 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )+\frac {27 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2}+\frac {27 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x}+\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x\right ) \, dx-48 \int \left (\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )+\frac {9 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2}+\frac {6 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x}\right ) \, dx-48 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx+76 \int \left (\frac {3 \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2}+\frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x)}{-3+x} \, dx-3 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log ^2(x)}{(-3+x)^2} \, dx+4 \int \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x) \, dx+8 \int \exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) x \, dx-12 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right ) \log (x)}{(-3+x)^2} \, dx-48 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx+76 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x} \, dx+216 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx+216 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x} \, dx+228 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx-288 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{-3+x} \, dx-432 \int \frac {\exp \left (\frac {x \left (24-16 x+4 x^2-8 \log (x)+4 x \log (x)+\log ^2(x)\right )}{-3+x}\right )}{(-3+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.99, size = 38, normalized size = 1.41 \begin {gather*} e^{\frac {x \left (4 \left (6-4 x+x^2\right )+\log ^2(x)\right )}{-3+x}} x^{\frac {4 (-2+x) x}{-3+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 38, normalized size = 1.41 \begin {gather*} e^{\left (\frac {4 \, x^{3} + x \log \relax (x)^{2} - 16 \, x^{2} + 4 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x) + 24 \, x}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 39, normalized size = 1.44 \begin {gather*} e^{\left (\frac {4 \, x^{3} + 4 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} - 16 \, x^{2} - 8 \, x \log \relax (x) + 24 \, x}{x - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 32, normalized size = 1.19
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (\ln \relax (x )^{2}+4 x \ln \relax (x )+4 x^{2}-8 \ln \relax (x )-16 x +24\right )}{x -3}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 51, normalized size = 1.89 \begin {gather*} x^{4} e^{\left (4 \, x^{2} + 4 \, x \log \relax (x) + \log \relax (x)^{2} - 4 \, x + \frac {3 \, \log \relax (x)^{2}}{x - 3} + \frac {12 \, \log \relax (x)}{x - 3} + \frac {36}{x - 3} + 12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.62, size = 68, normalized size = 2.52 \begin {gather*} \frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {21\,x}{x-3}}\,{\mathrm {e}}^{\frac {x\,{\ln \relax (x)}^2}{x-3}}\,{\mathrm {e}}^{\frac {4\,x^3}{x-3}}\,{\mathrm {e}}^{-\frac {15\,x^2}{x-3}}}{x^{\frac {4\,\left (2\,x-x^2\right )}{x-3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 61.18, size = 39, normalized size = 1.44 \begin {gather*} e^{- x} e^{\frac {4 x^{3} - 15 x^{2} + x \log {\relax (x )}^{2} + 21 x + \left (4 x^{2} - 8 x\right ) \log {\relax (x )}}{x - 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________