Optimal. Leaf size=29 \[ \left (\frac {1}{x}+x\right ) \left (1-\frac {e^3}{x}+x^2-\log (5)+\frac {\log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 51, normalized size of antiderivative = 1.76, number of steps used = 5, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {14, 2304} \begin {gather*} x^3-\frac {1+2 e^3}{2 x^2}+\frac {1}{2 x^2}+\frac {\log (x)}{x^2}+x (2-\log (5))+\log (x)+\frac {1-\log (5)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+2 e^3+x^2+3 x^5-x (1-\log (5))+2 x^3 \left (1-\frac {\log (5)}{2}\right )}{x^3}-\frac {2 \log (x)}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log (x)}{x^3} \, dx\right )+\int \frac {1+2 e^3+x^2+3 x^5-x (1-\log (5))+2 x^3 \left (1-\frac {\log (5)}{2}\right )}{x^3} \, dx\\ &=\frac {1}{2 x^2}+\frac {\log (x)}{x^2}+\int \left (\frac {1+2 e^3}{x^3}+\frac {1}{x}+3 x^2+2 \left (1-\frac {\log (5)}{2}\right )+\frac {-1+\log (5)}{x^2}\right ) \, dx\\ &=\frac {1}{2 x^2}-\frac {1+2 e^3}{2 x^2}+x^3+\frac {1-\log (5)}{x}+x (2-\log (5))+\log (x)+\frac {\log (x)}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 38, normalized size = 1.31 \begin {gather*} -\frac {e^3}{x^2}+\frac {1}{x}+2 x+x^3-\frac {\log (5)}{x}-x \log (5)+\log (x)+\frac {\log (x)}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 35, normalized size = 1.21 \begin {gather*} \frac {x^{5} + 2 \, x^{3} - {\left (x^{3} + x\right )} \log \relax (5) + {\left (x^{2} + 1\right )} \log \relax (x) + x - e^{3}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 38, normalized size = 1.31 \begin {gather*} \frac {x^{5} - x^{3} \log \relax (5) + 2 \, x^{3} + x^{2} \log \relax (x) - x \log \relax (5) + x - e^{3} + \log \relax (x)}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 38, normalized size = 1.31
method | result | size |
default | \(-\frac {{\mathrm e}^{3}}{x^{2}}+x^{3}-x \ln \relax (5)+2 x +\ln \relax (x )-\frac {\ln \relax (5)}{x}+\frac {1}{x}+\frac {\ln \relax (x )}{x^{2}}\) | \(38\) |
norman | \(\frac {x^{5}+\left (2-\ln \relax (5)\right ) x^{3}+\left (-\ln \relax (5)+1\right ) x +x^{2} \ln \relax (x )-{\mathrm e}^{3}+\ln \relax (x )}{x^{2}}\) | \(39\) |
risch | \(\frac {\ln \relax (x )}{x^{2}}+\frac {x^{5}-x^{3} \ln \relax (5)+x^{2} \ln \relax (x )+2 x^{3}-x \ln \relax (5)-{\mathrm e}^{3}+x}{x^{2}}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 37, normalized size = 1.28 \begin {gather*} x^{3} - x \log \relax (5) + 2 \, x - \frac {\log \relax (5)}{x} + \frac {1}{x} - \frac {e^{3}}{x^{2}} + \frac {\log \relax (x)}{x^{2}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.12, size = 36, normalized size = 1.24 \begin {gather*} \ln \relax (x)-\frac {x^2\,\left (\ln \relax (5)-1\right )+x\,\left ({\mathrm {e}}^3-\ln \relax (x)\right )}{x^3}-x\,\left (\ln \relax (5)-2\right )+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 32, normalized size = 1.10 \begin {gather*} x^{3} + x \left (2 - \log {\relax (5 )}\right ) + \log {\relax (x )} + \frac {x \left (1 - \log {\relax (5 )}\right ) - e^{3}}{x^{2}} + \frac {\log {\relax (x )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________