Optimal. Leaf size=22 \[ x \left (2+4 e^{12 e^{\frac {4-x}{x}}} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 36, normalized size of antiderivative = 1.64, number of steps used = 2, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2288} \begin {gather*} \frac {16 e^{12 e^{\frac {4-x}{x}}}}{\frac {4-x}{x^2}+\frac {1}{x}}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+\int e^{12 e^{\frac {4-x}{x}}} \left (-192 e^{\frac {4-x}{x}}+8 x\right ) \, dx\\ &=\frac {16 e^{12 e^{\frac {4-x}{x}}}}{\frac {4-x}{x^2}+\frac {1}{x}}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 22, normalized size = 1.00 \begin {gather*} 2 x+4 e^{12 e^{-1+\frac {4}{x}}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 21, normalized size = 0.95 \begin {gather*} 4 \, x^{2} e^{\left (12 \, e^{\left (-\frac {x - 4}{x}\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 8 \, {\left (x - 24 \, e^{\left (-\frac {x - 4}{x}\right )}\right )} e^{\left (12 \, e^{\left (-\frac {x - 4}{x}\right )}\right )} + 2\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 1.00
method | result | size |
risch | \(2 x +4 x^{2} {\mathrm e}^{12 \,{\mathrm e}^{-\frac {x -4}{x}}}\) | \(22\) |
default | \(2 x +4 x^{2} {\mathrm e}^{12 \,{\mathrm e}^{\frac {-x +4}{x}}}\) | \(23\) |
norman | \(2 x +4 x^{2} {\mathrm e}^{12 \,{\mathrm e}^{\frac {-x +4}{x}}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 20, normalized size = 0.91 \begin {gather*} 4 \, x^{2} e^{\left (12 \, e^{\left (\frac {4}{x} - 1\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 20, normalized size = 0.91 \begin {gather*} 2\,x+4\,x^2\,{\mathrm {e}}^{12\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^{4/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.85, size = 17, normalized size = 0.77 \begin {gather*} 4 x^{2} e^{12 e^{\frac {4 - x}{x}}} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________