Optimal. Leaf size=22 \[ 2 e^{-1-e^x} \left (-1+4 e^x\right )^2+x \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 39, normalized size of antiderivative = 1.77, number of steps used = 11, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {2282, 14, 2196, 2194, 2176} \begin {gather*} x+2 e^{-e^x-1}-16 e^{x-e^x-1}+32 e^{2 x-e^x-1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {1-2 e^{-1-x} x \left (9-40 x+16 x^2\right )}{x} \, dx,x,e^x\right )\\ &=\operatorname {Subst}\left (\int \left (\frac {1}{x}-2 e^{-1-x} (-9+4 x) (-1+4 x)\right ) \, dx,x,e^x\right )\\ &=x-2 \operatorname {Subst}\left (\int e^{-1-x} (-9+4 x) (-1+4 x) \, dx,x,e^x\right )\\ &=x-2 \operatorname {Subst}\left (\int \left (9 e^{-1-x}-40 e^{-1-x} x+16 e^{-1-x} x^2\right ) \, dx,x,e^x\right )\\ &=x-18 \operatorname {Subst}\left (\int e^{-1-x} \, dx,x,e^x\right )-32 \operatorname {Subst}\left (\int e^{-1-x} x^2 \, dx,x,e^x\right )+80 \operatorname {Subst}\left (\int e^{-1-x} x \, dx,x,e^x\right )\\ &=18 e^{-1-e^x}-80 e^{-1-e^x+x}+32 e^{-1-e^x+2 x}+x-64 \operatorname {Subst}\left (\int e^{-1-x} x \, dx,x,e^x\right )+80 \operatorname {Subst}\left (\int e^{-1-x} \, dx,x,e^x\right )\\ &=-62 e^{-1-e^x}-16 e^{-1-e^x+x}+32 e^{-1-e^x+2 x}+x-64 \operatorname {Subst}\left (\int e^{-1-x} \, dx,x,e^x\right )\\ &=2 e^{-1-e^x}-16 e^{-1-e^x+x}+32 e^{-1-e^x+2 x}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 32, normalized size = 1.45 \begin {gather*} e^{-e^x} \left (\frac {2}{e}-16 e^{-1+x}+32 e^{-1+2 x}\right )+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 27, normalized size = 1.23 \begin {gather*} {\left (x e^{\left (e^{x} + 1\right )} + 32 \, e^{\left (2 \, x\right )} - 16 \, e^{x} + 2\right )} e^{\left (-e^{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.59, size = 35, normalized size = 1.59 \begin {gather*} {\left (x e + 32 \, e^{\left (2 \, x - e^{x}\right )} - 16 \, e^{\left (x - e^{x}\right )} + 2 \, e^{\left (-e^{x}\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 1.05
method | result | size |
risch | \(x +\left (32 \,{\mathrm e}^{2 x}-16 \,{\mathrm e}^{x}+2\right ) {\mathrm e}^{-{\mathrm e}^{x}-1}\) | \(23\) |
norman | \(\left (x \,{\mathrm e}^{{\mathrm e}^{x}-3}+2 \,{\mathrm e}^{-4}+32 \,{\mathrm e}^{-4} {\mathrm e}^{2 x}-16 \,{\mathrm e}^{x} {\mathrm e}^{-4}\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}\) | \(41\) |
derivativedivides | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \ln \left ({\mathrm e}^{x}\right )+402 \,{\mathrm e}^{-{\mathrm e}^{x}+3}+208 \left ({\mathrm e}^{x}-5\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}+32 \left (\left ({\mathrm e}^{x}-3\right )^{2}-{\mathrm e}^{x}+11\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}\right )\) | \(56\) |
default | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \ln \left ({\mathrm e}^{x}\right )+402 \,{\mathrm e}^{-{\mathrm e}^{x}+3}+208 \left ({\mathrm e}^{x}-5\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}+32 \left (\left ({\mathrm e}^{x}-3\right )^{2}-{\mathrm e}^{x}+11\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}\right )\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 43, normalized size = 1.95 \begin {gather*} 32 \, {\left (e^{\left (2 \, x\right )} + 2 \, e^{x} + 2\right )} e^{\left (-e^{x} - 1\right )} - 80 \, {\left (e^{x} + 1\right )} e^{\left (-e^{x} - 1\right )} + x + 18 \, e^{\left (-e^{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.58, size = 33, normalized size = 1.50 \begin {gather*} x+2\,{\mathrm {e}}^{-{\mathrm {e}}^x-1}-16\,{\mathrm {e}}^{x-{\mathrm {e}}^x-1}+32\,{\mathrm {e}}^{2\,x-{\mathrm {e}}^x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 1.09 \begin {gather*} x + \frac {\left (32 e^{2 x} - 16 e^{x} + 2\right ) e^{3 - e^{x}}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________