Optimal. Leaf size=26 \[ 2-\frac {x}{4-e^{\frac {1}{x^3 (3+x) \log (x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 26.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-36 x^3-24 x^4-4 x^5\right ) \log ^2(x)+e^{\frac {1}{\left (3 x^3+x^4\right ) \log (x)}} \left (3+x+(9+4 x) \log (x)+\left (9 x^3+6 x^4+x^5\right ) \log ^2(x)\right )}{e^{\frac {1}{\left (3 x^3+x^4\right ) \log (x)}} \left (-72 x^3-48 x^4-8 x^5\right ) \log ^2(x)+e^{\frac {2}{\left (3 x^3+x^4\right ) \log (x)}} \left (9 x^3+6 x^4+x^5\right ) \log ^2(x)+\left (144 x^3+96 x^4+16 x^5\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{x^3 (3+x) \log (x)}} (3+x)+e^{\frac {1}{x^3 (3+x) \log (x)}} (9+4 x) \log (x)+\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^3 (3+x)^2 \log ^2(x)}{\left (4-e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^3 (3+x)^2 \log ^2(x)} \, dx\\ &=\int \left (\frac {4 (3+x+9 \log (x)+4 x \log (x))}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^3 (3+x)^2 \log ^2(x)}+\frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^3 (3+x)^2 \log ^2(x)}\right ) \, dx\\ &=4 \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^3 (3+x)^2 \log ^2(x)} \, dx+\int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^3 (3+x)^2 \log ^2(x)} \, dx\\ &=4 \int \left (\frac {3+x+9 \log (x)+4 x \log (x)}{9 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^3 \log ^2(x)}-\frac {2 (3+x+9 \log (x)+4 x \log (x))}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^2 \log ^2(x)}+\frac {3+x+9 \log (x)+4 x \log (x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x \log ^2(x)}-\frac {3+x+9 \log (x)+4 x \log (x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 (3+x)^2 \log ^2(x)}-\frac {3+x+9 \log (x)+4 x \log (x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 (3+x) \log ^2(x)}\right ) \, dx+\int \left (\frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{9 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^3 \log ^2(x)}-\frac {2 \left (3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)\right )}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^2 \log ^2(x)}+\frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x \log ^2(x)}-\frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) (3+x)^2 \log ^2(x)}-\frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{27 \left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) (3+x) \log ^2(x)}\right ) \, dx\\ &=\frac {1}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x \log ^2(x)} \, dx-\frac {1}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) (3+x)^2 \log ^2(x)} \, dx-\frac {1}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) (3+x) \log ^2(x)} \, dx-\frac {2}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^2 \log ^2(x)} \, dx+\frac {1}{9} \int \frac {3+x+9 \log (x)+4 x \log (x)+9 x^3 \log ^2(x)+6 x^4 \log ^2(x)+x^5 \log ^2(x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right ) x^3 \log ^2(x)} \, dx+\frac {4}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x \log ^2(x)} \, dx-\frac {4}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 (3+x)^2 \log ^2(x)} \, dx-\frac {4}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 (3+x) \log ^2(x)} \, dx-\frac {8}{27} \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^2 \log ^2(x)} \, dx+\frac {4}{9} \int \frac {3+x+9 \log (x)+4 x \log (x)}{\left (-4+e^{\frac {1}{x^3 (3+x) \log (x)}}\right )^2 x^3 \log ^2(x)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 21, normalized size = 0.81 \begin {gather*} \frac {x}{-4+e^{\frac {1}{x^3 (3+x) \log (x)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 23, normalized size = 0.88 \begin {gather*} \frac {x}{e^{\left (\frac {1}{{\left (x^{4} + 3 \, x^{3}\right )} \log \relax (x)}\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.73, size = 23, normalized size = 0.88 \begin {gather*} \frac {x}{e^{\left (\frac {1}{x^{4} \log \relax (x) + 3 \, x^{3} \log \relax (x)}\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.81
method | result | size |
risch | \(\frac {x}{{\mathrm e}^{\frac {1}{x^{3} \ln \relax (x ) \left (3+x \right )}}-4}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.89, size = 74, normalized size = 2.85 \begin {gather*} -\frac {x e^{\left (\frac {1}{27 \, {\left (x + 3\right )} \log \relax (x)} + \frac {1}{9 \, x^{2} \log \relax (x)}\right )}}{4 \, e^{\left (\frac {1}{27 \, {\left (x + 3\right )} \log \relax (x)} + \frac {1}{9 \, x^{2} \log \relax (x)}\right )} - e^{\left (\frac {1}{27 \, x \log \relax (x)} + \frac {1}{3 \, x^{3} \log \relax (x)}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 23, normalized size = 0.88 \begin {gather*} \frac {x}{{\mathrm {e}}^{\frac {1}{3\,x^3\,\ln \relax (x)+x^4\,\ln \relax (x)}}-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 17, normalized size = 0.65 \begin {gather*} \frac {x}{e^{\frac {1}{\left (x^{4} + 3 x^{3}\right ) \log {\relax (x )}}} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________