Optimal. Leaf size=20 \[ e^{x^2} \left (-6-\frac {2}{e^5}-e+e^3+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 32, normalized size of antiderivative = 1.60, number of steps used = 6, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2226, 2204, 2209, 2212} \begin {gather*} e^{x^2} x-\left (2+6 e^5+e^6-e^8\right ) e^{x^2-5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{x^2}+2 e^{-5+x^2} \left (-2-6 e^5-e^6+e^8\right ) x+2 e^{x^2} x^2\right ) \, dx\\ &=2 \int e^{x^2} x^2 \, dx-\left (2 \left (2+6 e^5+e^6-e^8\right )\right ) \int e^{-5+x^2} x \, dx+\int e^{x^2} \, dx\\ &=-e^{-5+x^2} \left (2+6 e^5+e^6-e^8\right )+e^{x^2} x+\frac {1}{2} \sqrt {\pi } \text {erfi}(x)-\int e^{x^2} \, dx\\ &=-e^{-5+x^2} \left (2+6 e^5+e^6-e^8\right )+e^{x^2} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 25, normalized size = 1.25 \begin {gather*} e^{-5+x^2} \left (-2-e^6+e^8+e^5 (-6+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 21, normalized size = 1.05 \begin {gather*} {\left ({\left (x - 6\right )} e^{5} + e^{8} - e^{6} - 2\right )} e^{\left (x^{2} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.55 \begin {gather*} {\left (x - 6\right )} e^{\left (x^{2}\right )} + e^{\left (x^{2} + 3\right )} - e^{\left (x^{2} + 1\right )} - 2 \, e^{\left (x^{2} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.20
method | result | size |
risch | \(\left ({\mathrm e}^{8}-{\mathrm e}^{6}+x \,{\mathrm e}^{5}-6 \,{\mathrm e}^{5}-2\right ) {\mathrm e}^{x^{2}-5}\) | \(24\) |
gosper | \(-{\mathrm e}^{x^{2}} \left (-x \,{\mathrm e}^{5}+{\mathrm e} \,{\mathrm e}^{5}-{\mathrm e}^{3} {\mathrm e}^{5}+6 \,{\mathrm e}^{5}+2\right ) {\mathrm e}^{-5}\) | \(33\) |
norman | \({\mathrm e}^{x^{2}} x -\left ({\mathrm e} \,{\mathrm e}^{5}-{\mathrm e}^{3} {\mathrm e}^{5}+6 \,{\mathrm e}^{5}+2\right ) {\mathrm e}^{-5} {\mathrm e}^{x^{2}}\) | \(35\) |
meijerg | \(\frac {\sqrt {\pi }\, \erfi \relax (x )}{2}-\frac {{\mathrm e}^{-5} \left (-2 \,{\mathrm e}^{6}+2 \,{\mathrm e}^{8}-12 \,{\mathrm e}^{5}-4\right ) \left (1-{\mathrm e}^{x^{2}}\right )}{2}+i \left (-i x \,{\mathrm e}^{x^{2}}+\frac {i \sqrt {\pi }\, \erfi \relax (x )}{2}\right )\) | \(55\) |
default | \({\mathrm e}^{-5} \left (\frac {{\mathrm e}^{5} \sqrt {\pi }\, \erfi \relax (x )}{2}-2 \,{\mathrm e}^{x^{2}}+2 \,{\mathrm e}^{5} \left (\frac {{\mathrm e}^{x^{2}} x}{2}-\frac {\sqrt {\pi }\, \erfi \relax (x )}{4}\right )-6 \,{\mathrm e}^{5} {\mathrm e}^{x^{2}}-{\mathrm e} \,{\mathrm e}^{5} {\mathrm e}^{x^{2}}+{\mathrm e}^{3} {\mathrm e}^{5} {\mathrm e}^{x^{2}}\right )\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 35, normalized size = 1.75 \begin {gather*} x e^{\left (x^{2}\right )} + e^{\left (x^{2} + 3\right )} - e^{\left (x^{2} + 1\right )} - 2 \, e^{\left (x^{2} - 5\right )} - 6 \, e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 25, normalized size = 1.25 \begin {gather*} -{\mathrm {e}}^{x^2-5}\,\left (6\,{\mathrm {e}}^5+{\mathrm {e}}^6-{\mathrm {e}}^8-x\,{\mathrm {e}}^5+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.30 \begin {gather*} \frac {\left (x e^{5} - 6 e^{5} - e^{6} - 2 + e^{8}\right ) e^{x^{2}}}{e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________