3.69.33 \(\int (1+e^{e^{\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}}+\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}} (1+5 e^x)) \, dx\)

Optimal. Leaf size=19 \[ 3+e^{e^{-\frac {1}{e^{16}}+5 e^x+x}}+x \]

________________________________________________________________________________________

Rubi [F]  time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (1+\exp \left (e^{\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}}+\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}\right ) \left (1+5 e^x\right )\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[1 + E^(E^((-1 + 5*E^(16 + x) + E^16*x)/E^16) + (-1 + 5*E^(16 + x) + E^16*x)/E^16)*(1 + 5*E^x),x]

[Out]

x + Defer[Subst][Defer[Int][E^(-E^(-16) + 5*x + E^(-E^(-16) + 5*x)*x), x], x, E^x] + 5*Defer[Subst][Defer[Int]
[E^(-E^(-16) + 5*x + E^(-E^(-16) + 5*x)*x)*x, x], x, E^x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=x+\int \exp \left (e^{\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}}+\frac {-1+5 e^{16+x}+e^{16} x}{e^{16}}\right ) \left (1+5 e^x\right ) \, dx\\ &=x+\int e^{-\frac {1}{e^{16}}+5 e^x+e^{-\frac {1}{e^{16}}+5 e^x+x}+x} \left (1+5 e^x\right ) \, dx\\ &=x+\operatorname {Subst}\left (\int e^{-\frac {1}{e^{16}}+5 x+e^{-\frac {1}{e^{16}}+5 x} x} (1+5 x) \, dx,x,e^x\right )\\ &=x+\operatorname {Subst}\left (\int \left (e^{-\frac {1}{e^{16}}+5 x+e^{-\frac {1}{e^{16}}+5 x} x}+5 e^{-\frac {1}{e^{16}}+5 x+e^{-\frac {1}{e^{16}}+5 x} x} x\right ) \, dx,x,e^x\right )\\ &=x+5 \operatorname {Subst}\left (\int e^{-\frac {1}{e^{16}}+5 x+e^{-\frac {1}{e^{16}}+5 x} x} x \, dx,x,e^x\right )+\operatorname {Subst}\left (\int e^{-\frac {1}{e^{16}}+5 x+e^{-\frac {1}{e^{16}}+5 x} x} \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 18, normalized size = 0.95 \begin {gather*} e^{e^{-\frac {1}{e^{16}}+5 e^x+x}}+x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1 + E^(E^((-1 + 5*E^(16 + x) + E^16*x)/E^16) + (-1 + 5*E^(16 + x) + E^16*x)/E^16)*(1 + 5*E^x),x]

[Out]

E^E^(-E^(-16) + 5*E^x + x) + x

________________________________________________________________________________________

fricas [B]  time = 0.49, size = 71, normalized size = 3.74 \begin {gather*} {\left (x e^{\left ({\left (x e^{16} + 5 \, e^{\left (x + 16\right )} - 1\right )} e^{\left (-16\right )}\right )} + e^{\left ({\left (x e^{16} + e^{\left ({\left (x e^{16} + 5 \, e^{\left (x + 16\right )} - 1\right )} e^{\left (-16\right )} + 16\right )} + 5 \, e^{\left (x + 16\right )} - 1\right )} e^{\left (-16\right )}\right )}\right )} e^{\left (-{\left (x e^{16} + 5 \, e^{\left (x + 16\right )} - 1\right )} e^{\left (-16\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*exp(x)+1)*exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16))*exp(exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(
16)))+1,x, algorithm="fricas")

[Out]

(x*e^((x*e^16 + 5*e^(x + 16) - 1)*e^(-16)) + e^((x*e^16 + e^((x*e^16 + 5*e^(x + 16) - 1)*e^(-16) + 16) + 5*e^(
x + 16) - 1)*e^(-16)))*e^(-(x*e^16 + 5*e^(x + 16) - 1)*e^(-16))

________________________________________________________________________________________

giac [A]  time = 0.19, size = 14, normalized size = 0.74 \begin {gather*} x + e^{\left (e^{\left (x - e^{\left (-16\right )} + 5 \, e^{x}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*exp(x)+1)*exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16))*exp(exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(
16)))+1,x, algorithm="giac")

[Out]

x + e^(e^(x - e^(-16) + 5*e^x))

________________________________________________________________________________________

maple [A]  time = 0.18, size = 20, normalized size = 1.05




method result size



risch \(x +{\mathrm e}^{{\mathrm e}^{\left (5 \,{\mathrm e}^{x +16}+x \,{\mathrm e}^{16}-1\right ) {\mathrm e}^{-16}}}\) \(20\)
default \(x +{\mathrm e}^{{\mathrm e}^{\left (5 \,{\mathrm e}^{16} {\mathrm e}^{x}+x \,{\mathrm e}^{16}-1\right ) {\mathrm e}^{-16}}}\) \(22\)
norman \(x +{\mathrm e}^{{\mathrm e}^{\left (5 \,{\mathrm e}^{16} {\mathrm e}^{x}+x \,{\mathrm e}^{16}-1\right ) {\mathrm e}^{-16}}}\) \(22\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*exp(x)+1)*exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16))*exp(exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16)))+
1,x,method=_RETURNVERBOSE)

[Out]

x+exp(exp((5*exp(x+16)+x*exp(16)-1)*exp(-16)))

________________________________________________________________________________________

maxima [A]  time = 0.63, size = 14, normalized size = 0.74 \begin {gather*} x + e^{\left (e^{\left (x - e^{\left (-16\right )} + 5 \, e^{x}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*exp(x)+1)*exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16))*exp(exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(
16)))+1,x, algorithm="maxima")

[Out]

x + e^(e^(x - e^(-16) + 5*e^x))

________________________________________________________________________________________

mupad [B]  time = 4.15, size = 16, normalized size = 0.84 \begin {gather*} x+{\mathrm {e}}^{{\mathrm {e}}^{-{\mathrm {e}}^{-16}}\,{\mathrm {e}}^{5\,{\mathrm {e}}^x}\,{\mathrm {e}}^x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(exp(-16)*(x*exp(16) + 5*exp(16)*exp(x) - 1))*exp(exp(exp(-16)*(x*exp(16) + 5*exp(16)*exp(x) - 1)))*(5*
exp(x) + 1) + 1,x)

[Out]

x + exp(exp(-exp(-16))*exp(5*exp(x))*exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.34, size = 22, normalized size = 1.16 \begin {gather*} x + e^{e^{\frac {x e^{16} + 5 e^{16} e^{x} - 1}{e^{16}}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*exp(x)+1)*exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(16))*exp(exp((5*exp(16)*exp(x)+x*exp(16)-1)/exp(
16)))+1,x)

[Out]

x + exp(exp((x*exp(16) + 5*exp(16)*exp(x) - 1)*exp(-16)))

________________________________________________________________________________________