3.69.32 \(\int \frac {4-x-3 e^x x}{x} \, dx\)

Optimal. Leaf size=26 \[ -2+e^x-x-\log (5)+4 \left (-e^x+\log \left (\frac {x}{4}\right )\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 13, normalized size of antiderivative = 0.50, number of steps used = 5, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {14, 2194, 43} \begin {gather*} -x-3 e^x+4 \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 - x - 3*E^x*x)/x,x]

[Out]

-3*E^x - x + 4*Log[x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 e^x+\frac {4-x}{x}\right ) \, dx\\ &=-\left (3 \int e^x \, dx\right )+\int \frac {4-x}{x} \, dx\\ &=-3 e^x+\int \left (-1+\frac {4}{x}\right ) \, dx\\ &=-3 e^x-x+4 \log (x)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 13, normalized size = 0.50 \begin {gather*} -3 e^x-x+4 \log (x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 - x - 3*E^x*x)/x,x]

[Out]

-3*E^x - x + 4*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 12, normalized size = 0.46 \begin {gather*} -x - 3 \, e^{x} + 4 \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*exp(x)*x-x+4)/x,x, algorithm="fricas")

[Out]

-x - 3*e^x + 4*log(x)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 12, normalized size = 0.46 \begin {gather*} -x - 3 \, e^{x} + 4 \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*exp(x)*x-x+4)/x,x, algorithm="giac")

[Out]

-x - 3*e^x + 4*log(x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 13, normalized size = 0.50




method result size



default \(-x +4 \ln \relax (x )-3 \,{\mathrm e}^{x}\) \(13\)
norman \(-x +4 \ln \relax (x )-3 \,{\mathrm e}^{x}\) \(13\)
risch \(-x +4 \ln \relax (x )-3 \,{\mathrm e}^{x}\) \(13\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-3*exp(x)*x-x+4)/x,x,method=_RETURNVERBOSE)

[Out]

-x+4*ln(x)-3*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 12, normalized size = 0.46 \begin {gather*} -x - 3 \, e^{x} + 4 \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*exp(x)*x-x+4)/x,x, algorithm="maxima")

[Out]

-x - 3*e^x + 4*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 12, normalized size = 0.46 \begin {gather*} 4\,\ln \relax (x)-3\,{\mathrm {e}}^x-x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + 3*x*exp(x) - 4)/x,x)

[Out]

4*log(x) - 3*exp(x) - x

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 10, normalized size = 0.38 \begin {gather*} - x - 3 e^{x} + 4 \log {\relax (x )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*exp(x)*x-x+4)/x,x)

[Out]

-x - 3*exp(x) + 4*log(x)

________________________________________________________________________________________