Optimal. Leaf size=28 \[ e^{\frac {5}{x}-x} \sqrt [3]{\left (1+\frac {e^x x}{4}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 43, normalized size of antiderivative = 1.54, number of steps used = 1, number of rules used = 1, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6706} \begin {gather*} \frac {e^{\frac {5-x^2}{x}} \sqrt [3]{e^{2 x} x^2+8 e^x x+16}}{2 \sqrt [3]{2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{\frac {5-x^2}{x}} \sqrt [3]{16+8 e^x x+e^{2 x} x^2}}{2 \sqrt [3]{2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 33, normalized size = 1.18 \begin {gather*} \frac {e^{\frac {5}{x}-x} \sqrt [3]{\left (4+e^x x\right )^2}}{2 \sqrt [3]{2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 33, normalized size = 1.18 \begin {gather*} e^{\left (-\frac {3 \, x^{2} - x \log \left (\frac {1}{16} \, x^{2} e^{\left (2 \, x\right )} + \frac {1}{2} \, x e^{x} + 1\right ) - 15}{3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.79, size = 29, normalized size = 1.04 \begin {gather*} e^{\left (-x + \frac {5}{x} + \frac {1}{3} \, \log \left (\frac {1}{16} \, x^{2} e^{\left (2 \, x\right )} + \frac {1}{2} \, x e^{x} + 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 104, normalized size = 3.71
method | result | size |
risch | \(\frac {2^{\frac {2}{3}} \left ({\mathrm e}^{x} x +4\right )^{\frac {2}{3}} {\mathrm e}^{-\frac {i x \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +4\right )^{2}\right )^{3}-2 i x \pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +4\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +4\right )\right )+i x \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +4\right )^{2}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x} x +4\right )\right )^{2}+6 x^{2}-30}{6 x}}}{4}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 23, normalized size = 0.82 \begin {gather*} \frac {1}{4} \cdot 2^{\frac {2}{3}} {\left (x e^{x} + 4\right )}^{\frac {2}{3}} e^{\left (-x + \frac {5}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 32, normalized size = 1.14 \begin {gather*} \frac {{16}^{2/3}\,{\mathrm {e}}^{\frac {5}{x}-x}\,{\left (x^2\,{\mathrm {e}}^{2\,x}+8\,x\,{\mathrm {e}}^x+16\right )}^{1/3}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 51.74, size = 31, normalized size = 1.11 \begin {gather*} e^{\frac {- x^{2} + \frac {x \log {\left (\frac {x^{2} e^{2 x}}{16} + \frac {x e^{x}}{2} + 1 \right )}}{3} + 5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________