Optimal. Leaf size=26 \[ x \left (-5+x+\frac {\left (-4+e^{9+e^{x^2}}\right ) (x+\log (4))}{e^3}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 179, normalized size of antiderivative = 6.88, number of steps used = 6, number of rules used = 2, integrand size = 225, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {12, 2288} \begin {gather*} -\frac {8 x^3}{e^3}+\frac {16 x^3}{e^6}+x^3+\frac {40 x^2}{e^3}-10 x^2+\frac {e^{2 e^{x^2}+12} \left (x^4+2 x^3 \log (4)+x^2 \log ^2(4)\right )}{x}-\frac {2 e^{e^{x^2}+3} \left (4 x^4+4 x^2 \log ^2(4)+e^3 \left (5 x^3-x^4\right )+\left (8 x^3+e^3 \left (5 x^2-x^3\right )\right ) \log (4)\right )}{x}+25 x+\frac {16 x \log ^2(4)}{e^6}+\frac {2 \left (e^3 (5-2 x)+8 x\right )^2 \log (4)}{e^6 \left (4-e^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (48 x^2+e^3 \left (80 x-24 x^2\right )+e^6 \left (25-20 x+3 x^2\right )+\left (e^3 (40-16 x)+64 x\right ) \log (4)+16 \log ^2(4)+e^{9+e^{x^2}} \left (-24 x^2+e^3 \left (-20 x+6 x^2\right )+\left (-32 x+e^3 (-10+4 x)\right ) \log (4)-8 \log ^2(4)+e^{x^2} \left (-16 x^4+e^3 \left (-20 x^3+4 x^4\right )+\left (-32 x^3+e^3 \left (-20 x^2+4 x^3\right )\right ) \log (4)-16 x^2 \log ^2(4)\right )\right )+e^{18+2 e^{x^2}} \left (3 x^2+4 x \log (4)+\log ^2(4)+e^{x^2} \left (4 x^4+8 x^3 \log (4)+4 x^2 \log ^2(4)\right )\right )\right ) \, dx}{e^6}\\ &=\frac {16 x^3}{e^6}+\frac {2 \left (e^3 (5-2 x)+8 x\right )^2 \log (4)}{e^6 \left (4-e^3\right )}+\frac {16 x \log ^2(4)}{e^6}+\frac {\int e^{9+e^{x^2}} \left (-24 x^2+e^3 \left (-20 x+6 x^2\right )+\left (-32 x+e^3 (-10+4 x)\right ) \log (4)-8 \log ^2(4)+e^{x^2} \left (-16 x^4+e^3 \left (-20 x^3+4 x^4\right )+\left (-32 x^3+e^3 \left (-20 x^2+4 x^3\right )\right ) \log (4)-16 x^2 \log ^2(4)\right )\right ) \, dx}{e^6}+\frac {\int e^{18+2 e^{x^2}} \left (3 x^2+4 x \log (4)+\log ^2(4)+e^{x^2} \left (4 x^4+8 x^3 \log (4)+4 x^2 \log ^2(4)\right )\right ) \, dx}{e^6}+\frac {\int \left (80 x-24 x^2\right ) \, dx}{e^3}+\int \left (25-20 x+3 x^2\right ) \, dx\\ &=25 x-10 x^2+\frac {40 x^2}{e^3}+x^3+\frac {16 x^3}{e^6}-\frac {8 x^3}{e^3}+\frac {2 \left (e^3 (5-2 x)+8 x\right )^2 \log (4)}{e^6 \left (4-e^3\right )}+\frac {16 x \log ^2(4)}{e^6}+\frac {e^{12+2 e^{x^2}} \left (x^4+2 x^3 \log (4)+x^2 \log ^2(4)\right )}{x}-\frac {2 e^{3+e^{x^2}} \left (4 x^4+e^3 \left (5 x^3-x^4\right )+\left (8 x^3+e^3 \left (5 x^2-x^3\right )\right ) \log (4)+4 x^2 \log ^2(4)\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 35, normalized size = 1.35 \begin {gather*} \frac {x \left (e^3 (-5+x)-4 (x+\log (4))+e^{9+e^{x^2}} (x+\log (4))\right )^2}{e^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 149, normalized size = 5.73 \begin {gather*} {\left (16 \, x^{3} + 64 \, x \log \relax (2)^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{6} - 8 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{3} + {\left (x^{3} + 4 \, x^{2} \log \relax (2) + 4 \, x \log \relax (2)^{2}\right )} e^{\left (2 \, e^{\left (x^{2}\right )} + 18\right )} - 2 \, {\left (4 \, x^{3} + 16 \, x \log \relax (2)^{2} - {\left (x^{3} - 5 \, x^{2}\right )} e^{3} + 2 \, {\left (8 \, x^{2} - {\left (x^{2} - 5 \, x\right )} e^{3}\right )} \log \relax (2)\right )} e^{\left (e^{\left (x^{2}\right )} + 9\right )} + 16 \, {\left (4 \, x^{2} - {\left (x^{2} - 5 \, x\right )} e^{3}\right )} \log \relax (2)\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 229, normalized size = 8.81 \begin {gather*} {\left (x^{3} e^{\left (2 \, e^{\left (x^{2}\right )} + 18\right )} + 4 \, x^{2} e^{\left (2 \, e^{\left (x^{2}\right )} + 18\right )} \log \relax (2) + 4 \, x e^{\left (2 \, e^{\left (x^{2}\right )} + 18\right )} \log \relax (2)^{2} + 16 \, x^{3} + 64 \, x \log \relax (2)^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{6} - 8 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{3} + 2 \, {\left (x^{3} e^{\left (x^{2} + e^{\left (x^{2}\right )} + 12\right )} - 4 \, x^{3} e^{\left (x^{2} + e^{\left (x^{2}\right )} + 9\right )} + 2 \, x^{2} e^{\left (x^{2} + e^{\left (x^{2}\right )} + 12\right )} \log \relax (2) - 16 \, x^{2} e^{\left (x^{2} + e^{\left (x^{2}\right )} + 9\right )} \log \relax (2) - 16 \, x e^{\left (x^{2} + e^{\left (x^{2}\right )} + 9\right )} \log \relax (2)^{2} - 5 \, x^{2} e^{\left (x^{2} + e^{\left (x^{2}\right )} + 12\right )} - 10 \, x e^{\left (x^{2} + e^{\left (x^{2}\right )} + 12\right )} \log \relax (2)\right )} e^{\left (-x^{2}\right )} + 16 \, {\left (4 \, x^{2} - {\left (x^{2} - 5 \, x\right )} e^{3}\right )} \log \relax (2)\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.20, size = 145, normalized size = 5.58
method | result | size |
risch | \(x^{3}-10 x^{2}-16 \ln \relax (2) {\mathrm e}^{-3} x^{2}-8 \,{\mathrm e}^{-3} x^{3}+25 x +80 \,{\mathrm e}^{-3} \ln \relax (2) x +40 x^{2} {\mathrm e}^{-3}+64 \,{\mathrm e}^{-6} x \ln \relax (2)^{2}+64 \,{\mathrm e}^{-6} x^{2} \ln \relax (2)+16 \,{\mathrm e}^{-6} x^{3}+\left (4 \ln \relax (2)^{2}+4 x \ln \relax (2)+x^{2}\right ) x \,{\mathrm e}^{12+2 \,{\mathrm e}^{x^{2}}}+2 \left (2 \,{\mathrm e}^{3} \ln \relax (2) x +x^{2} {\mathrm e}^{3}-10 \,{\mathrm e}^{3} \ln \relax (2)-5 x \,{\mathrm e}^{3}-16 \ln \relax (2)^{2}-16 x \ln \relax (2)-4 x^{2}\right ) x \,{\mathrm e}^{{\mathrm e}^{x^{2}}+3}\) | \(145\) |
default | \({\mathrm e}^{-6} \left (x^{3} {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}+4 x \ln \relax (2)^{2} {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}+4 x^{2} \ln \relax (2) {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}+\left (-20 \,{\mathrm e}^{3} \ln \relax (2)-32 \ln \relax (2)^{2}\right ) x \,{\mathrm e}^{{\mathrm e}^{x^{2}}+9}+\left (2 \,{\mathrm e}^{3}-8\right ) x^{3} {\mathrm e}^{{\mathrm e}^{x^{2}}+9}+\left (4 \,{\mathrm e}^{3} \ln \relax (2)-10 \,{\mathrm e}^{3}-32 \ln \relax (2)\right ) x^{2} {\mathrm e}^{{\mathrm e}^{x^{2}}+9}+{\mathrm e}^{3} \left (-8 x^{3}+40 x^{2}\right )+{\mathrm e}^{6} \left (x^{3}-10 x^{2}+25 x \right )+16 x^{3}+64 x \ln \relax (2)^{2}-16 \ln \relax (2) x^{2} {\mathrm e}^{3}+80 \,{\mathrm e}^{3} \ln \relax (2) x +64 x^{2} \ln \relax (2)\right )\) | \(183\) |
norman | \(\left (\left ({\mathrm e}^{6}-8 \,{\mathrm e}^{3}+16\right ) {\mathrm e}^{-3} x^{3}+\left (25 \,{\mathrm e}^{6}+64 \ln \relax (2)^{2}+80 \,{\mathrm e}^{3} \ln \relax (2)\right ) {\mathrm e}^{-3} x +{\mathrm e}^{-3} x^{3} {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}-2 \left (5 \,{\mathrm e}^{6}+8 \,{\mathrm e}^{3} \ln \relax (2)-20 \,{\mathrm e}^{3}-32 \ln \relax (2)\right ) {\mathrm e}^{-3} x^{2}+2 \left ({\mathrm e}^{3}-4\right ) {\mathrm e}^{-3} x^{3} {\mathrm e}^{{\mathrm e}^{x^{2}}+9}+2 \left (2 \,{\mathrm e}^{3} \ln \relax (2)-5 \,{\mathrm e}^{3}-16 \ln \relax (2)\right ) {\mathrm e}^{-3} x^{2} {\mathrm e}^{{\mathrm e}^{x^{2}}+9}+4 \,{\mathrm e}^{-3} \ln \relax (2)^{2} x \,{\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}+4 \ln \relax (2) {\mathrm e}^{-3} x^{2} {\mathrm e}^{2 \,{\mathrm e}^{x^{2}}+18}-4 \ln \relax (2) \left (5 \,{\mathrm e}^{3}+8 \ln \relax (2)\right ) {\mathrm e}^{-3} x \,{\mathrm e}^{{\mathrm e}^{x^{2}}+9}\right ) {\mathrm e}^{-3}\) | \(213\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 155, normalized size = 5.96 \begin {gather*} {\left (16 \, x^{3} + 64 \, x \log \relax (2)^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{6} - 8 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{3} + {\left (x^{3} e^{18} + 4 \, x^{2} e^{18} \log \relax (2) + 4 \, x e^{18} \log \relax (2)^{2}\right )} e^{\left (2 \, e^{\left (x^{2}\right )}\right )} + 2 \, {\left (x^{3} {\left (e^{12} - 4 \, e^{9}\right )} + {\left ({\left (2 \, \log \relax (2) - 5\right )} e^{12} - 16 \, e^{9} \log \relax (2)\right )} x^{2} - 2 \, {\left (8 \, e^{9} \log \relax (2)^{2} + 5 \, e^{12} \log \relax (2)\right )} x\right )} e^{\left (e^{\left (x^{2}\right )}\right )} + 16 \, {\left (4 \, x^{2} - {\left (x^{2} - 5 \, x\right )} e^{3}\right )} \log \relax (2)\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 44, normalized size = 1.69 \begin {gather*} x\,{\mathrm {e}}^{-6}\,{\left (4\,x+5\,{\mathrm {e}}^3+8\,\ln \relax (2)-x\,{\mathrm {e}}^3-2\,{\mathrm {e}}^9\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}}\,\ln \relax (2)-x\,{\mathrm {e}}^9\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 5.97, size = 196, normalized size = 7.54 \begin {gather*} \frac {x^{3} \left (- 8 e^{3} + 16 + e^{6}\right )}{e^{6}} + \frac {x^{2} \left (- 10 e^{6} - 16 e^{3} \log {\relax (2 )} + 64 \log {\relax (2 )} + 40 e^{3}\right )}{e^{6}} + \frac {x \left (64 \log {\relax (2 )}^{2} + 80 e^{3} \log {\relax (2 )} + 25 e^{6}\right )}{e^{6}} + \frac {\left (x^{3} e^{6} + 4 x^{2} e^{6} \log {\relax (2 )} + 4 x e^{6} \log {\relax (2 )}^{2}\right ) e^{2 e^{x^{2}} + 18} + \left (- 8 x^{3} e^{6} + 2 x^{3} e^{9} - 10 x^{2} e^{9} - 32 x^{2} e^{6} \log {\relax (2 )} + 4 x^{2} e^{9} \log {\relax (2 )} - 20 x e^{9} \log {\relax (2 )} - 32 x e^{6} \log {\relax (2 )}^{2}\right ) e^{e^{x^{2}} + 9}}{e^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________