3.68.31 \(\int \frac {30 x+e^{-6+2 e^x} (2-64 e^x x)-64 \log (x)+2 \log ^2(x)+e^{-3+e^x} (-64+(4-64 e^x x) \log (x))}{e^{-102+34 e^x}-x^{17}+34 e^{-99+33 e^x} \log (x)+17 x^{16} \log ^2(x)-136 x^{15} \log ^4(x)+680 x^{14} \log ^6(x)-2380 x^{13} \log ^8(x)+6188 x^{12} \log ^{10}(x)-12376 x^{11} \log ^{12}(x)+19448 x^{10} \log ^{14}(x)-24310 x^9 \log ^{16}(x)+24310 x^8 \log ^{18}(x)-19448 x^7 \log ^{20}(x)+12376 x^6 \log ^{22}(x)-6188 x^5 \log ^{24}(x)+2380 x^4 \log ^{26}(x)-680 x^3 \log ^{28}(x)+136 x^2 \log ^{30}(x)-17 x \log ^{32}(x)+\log ^{34}(x)+e^{-96+32 e^x} (-17 x+561 \log ^2(x))+e^{-93+31 e^x} (-544 x \log (x)+5984 \log ^3(x))+e^{-90+30 e^x} (136 x^2-8432 x \log ^2(x)+46376 \log ^4(x))+e^{-87+29 e^x} (4080 x^2 \log (x)-84320 x \log ^3(x)+278256 \log ^5(x))+e^{-84+28 e^x} (-680 x^3+59160 x^2 \log ^2(x)-611320 x \log ^4(x)+1344904 \log ^6(x))+e^{-81+27 e^x} (-19040 x^3 \log (x)+552160 x^2 \log ^3(x)-3423392 x \log ^5(x)+5379616 \log ^7(x))+e^{-78+26 e^x} (2380 x^4-257040 x^3 \log ^2(x)+3727080 x^2 \log ^4(x)-15405264 x \log ^6(x)+18156204 \log ^8(x))+e^{-75+25 e^x} (61880 x^4 \log (x)-2227680 x^3 \log ^3(x)+19380816 x^2 \log ^5(x)-57219552 x \log ^7(x)+52451256 \log ^9(x))+e^{-72+24 e^x} (-6188 x^5+773500 x^4 \log ^2(x)-13923000 x^3 \log ^4(x)+80753400 x^2 \log ^6(x)-178811100 x \log ^8(x)+131128140 \log ^{10}(x))+e^{-69+23 e^x} (-148512 x^5 \log (x)+6188000 x^4 \log ^3(x)-66830400 x^3 \log ^5(x)+276868800 x^2 \log ^7(x)-476829600 x \log ^9(x)+286097760 \log ^{11}(x))+e^{-66+22 e^x} (12376 x^6-1707888 x^5 \log ^2(x)+35581000 x^4 \log ^4(x)-256183200 x^3 \log ^6(x)+795997800 x^2 \log ^8(x)-1096708080 x \log ^{10}(x)+548354040 \log ^{12}(x))+e^{-63+21 e^x} (272272 x^6 \log (x)-12524512 x^5 \log ^3(x)+156556400 x^4 \log ^5(x)-805147200 x^3 \log ^7(x)+1945772400 x^2 \log ^9(x)-2193416160 x \log ^{11}(x)+927983760 \log ^{13}(x))+e^{-60+20 e^x} (-19448 x^7+2858856 x^6 \log ^2(x)-65753688 x^5 \log ^4(x)+547947400 x^4 \log ^6(x)-2113511400 x^3 \log ^8(x)+4086122040 x^2 \log ^{10}(x)-3838478280 x \log ^{12}(x)+1391975640 \log ^{14}(x))+e^{-57+19 e^x} (-388960 x^7 \log (x)+19059040 x^6 \log ^3(x)-263014752 x^5 \log ^5(x)+1565564000 x^4 \log ^7(x)-4696692000 x^3 \log ^9(x)+7429312800 x^2 \log ^{11}(x)-5905351200 x \log ^{13}(x)+1855967520 \log ^{15}(x))+e^{-54+18 e^x} (24310 x^8-3695120 x^7 \log ^2(x)+90530440 x^6 \log ^4(x)-832880048 x^5 \log ^6(x)+3718214500 x^4 \log ^8(x)-8923714800 x^3 \log ^{10}(x)+11763078600 x^2 \log ^{12}(x)-8014405200 x \log ^{14}(x)+2203961430 \log ^{16}(x))+e^{-51+17 e^x} (437580 x^8 \log (x)-22170720 x^7 \log ^3(x)+325909584 x^6 \log ^5(x)-2141691552 x^5 \log ^7(x)+7436429000 x^4 \log ^9(x)-14602442400 x^3 \log ^{11}(x)+16287339600 x^2 \log ^{13}(x)-9617286240 x \log ^{15}(x)+2333606220 \log ^{17}(x))+e^{-48+16 e^x} (-24310 x^9+3719430 x^8 \log ^2(x)-94225560 x^7 \log ^4(x)+923410488 x^6 \log ^6(x)-4551094548 x^5 \log ^8(x)+12641929300 x^4 \log ^{10}(x)-20686793400 x^3 \log ^{12}(x)+19777483800 x^2 \log ^{14}(x)-10218366630 x \log ^{16}(x)+2203961430 \log ^{18}(x))+e^{-45+15 e^x} (-388960 x^9 \log (x)+19836960 x^8 \log ^3(x)-301521792 x^7 \log ^5(x)+2110652544 x^6 \log ^7(x)-8090834752 x^5 \log ^9(x)+18388260800 x^4 \log ^{11}(x)-25460668800 x^3 \log ^{13}(x)+21095982720 x^2 \log ^{15}(x)-9617286240 x \log ^{17}(x)+1855967520 \log ^{19}(x))+e^{-42+14 e^x} (19448 x^{10}-2917200 x^9 \log ^2(x)+74388600 x^8 \log ^4(x)-753804480 x^7 \log ^6(x)+3957473520 x^6 \log ^8(x)-12136252128 x^5 \log ^{10}(x)+22985326000 x^4 \log ^{12}(x)-27279288000 x^3 \log ^{14}(x)+19777483800 x^2 \log ^{16}(x)-8014405200 x \log ^{18}(x)+1391975640 \log ^{20}(x))+e^{-39+13 e^x} (272272 x^{10} \log (x)-13613600 x^9 \log ^3(x)+208288080 x^8 \log ^5(x)-1507608960 x^7 \log ^7(x)+6156069920 x^6 \log ^9(x)-15446139072 x^5 \log ^{11}(x)+24753428000 x^4 \log ^{13}(x)-25460668800 x^3 \log ^{15}(x)+16287339600 x^2 \log ^{17}(x)-5905351200 x \log ^{19}(x)+927983760 \log ^{21}(x))+e^{-36+12 e^x} (-12376 x^{11}+1769768 x^{10} \log ^2(x)-44244200 x^9 \log ^4(x)+451290840 x^8 \log ^6(x)-2449864560 x^7 \log ^8(x)+8002890896 x^6 \log ^{10}(x)-16733317328 x^5 \log ^{12}(x)+22985326000 x^4 \log ^{14}(x)-20686793400 x^3 \log ^{16}(x)+11763078600 x^2 \log ^{18}(x)-3838478280 x \log ^{20}(x)+548354040 \log ^{22}(x))+e^{-33+11 e^x} (-148512 x^{11} \log (x)+7079072 x^{10} \log ^3(x)-106186080 x^9 \log ^5(x)+773641440 x^8 \log ^7(x)-3266486080 x^7 \log ^9(x)+8730426432 x^6 \log ^{11}(x)-15446139072 x^5 \log ^{13}(x)+18388260800 x^4 \log ^{15}(x)-14602442400 x^3 \log ^{17}(x)+7429312800 x^2 \log ^{19}(x)-2193416160 x \log ^{21}(x)+286097760 \log ^{23}(x))+e^{-30+10 e^x} (6188 x^{12}-816816 x^{11} \log ^2(x)+19467448 x^{10} \log ^4(x)-194674480 x^9 \log ^6(x)+1063756980 x^8 \log ^8(x)-3593134688 x^7 \log ^{10}(x)+8002890896 x^6 \log ^{12}(x)-12136252128 x^5 \log ^{14}(x)+12641929300 x^4 \log ^{16}(x)-8923714800 x^3 \log ^{18}(x)+4086122040 x^2 \log ^{20}(x)-1096708080 x \log ^{22}(x)+131128140 \log ^{24}(x))+e^{-27+9 e^x} (61880 x^{12} \log (x)-2722720 x^{11} \log ^3(x)+38934896 x^{10} \log ^5(x)-278106400 x^9 \log ^7(x)+1181952200 x^8 \log ^9(x)-3266486080 x^7 \log ^{11}(x)+6156069920 x^6 \log ^{13}(x)-8090834752 x^5 \log ^{15}(x)+7436429000 x^4 \log ^{17}(x)-4696692000 x^3 \log ^{19}(x)+1945772400 x^2 \log ^{21}(x)-476829600 x \log ^{23}(x)+52451256 \log ^{25}(x))+e^{-24+8 e^x} (-2380 x^{13}+278460 x^{12} \log ^2(x)-6126120 x^{11} \log ^4(x)+58402344 x^{10} \log ^6(x)-312869700 x^9 \log ^8(x)+1063756980 x^8 \log ^{10}(x)-2449864560 x^7 \log ^{12}(x)+3957473520 x^6 \log ^{14}(x)-4551094548 x^5 \log ^{16}(x)+3718214500 x^4 \log ^{18}(x)-2113511400 x^3 \log ^{20}(x)+795997800 x^2 \log ^{22}(x)-178811100 x \log ^{24}(x)+18156204 \log ^{26}(x))+e^{-21+7 e^x} (-19040 x^{13} \log (x)+742560 x^{12} \log ^3(x)-9801792 x^{11} \log ^5(x)+66745536 x^{10} \log ^7(x)-278106400 x^9 \log ^9(x)+773641440 x^8 \log ^{11}(x)-1507608960 x^7 \log ^{13}(x)+2110652544 x^6 \log ^{15}(x)-2141691552 x^5 \log ^{17}(x)+1565564000 x^4 \log ^{19}(x)-805147200 x^3 \log ^{21}(x)+276868800 x^2 \log ^{23}(x)-57219552 x \log ^{25}(x)+5379616 \log ^{27}(x))+e^{-18+6 e^x} (680 x^{14}-66640 x^{13} \log ^2(x)+1299480 x^{12} \log ^4(x)-11435424 x^{11} \log ^6(x)+58402344 x^{10} \log ^8(x)-194674480 x^9 \log ^{10}(x)+451290840 x^8 \log ^{12}(x)-753804480 x^7 \log ^{14}(x)+923410488 x^6 \log ^{16}(x)-832880048 x^5 \log ^{18}(x)+547947400 x^4 \log ^{20}(x)-256183200 x^3 \log ^{22}(x)+80753400 x^2 \log ^{24}(x)-15405264 x \log ^{26}(x)+1344904 \log ^{28}(x))+e^{-15+5 e^x} (4080 x^{14} \log (x)-133280 x^{13} \log ^3(x)+1559376 x^{12} \log ^5(x)-9801792 x^{11} \log ^7(x)+38934896 x^{10} \log ^9(x)-106186080 x^9 \log ^{11}(x)+208288080 x^8 \log ^{13}(x)-301521792 x^7 \log ^{15}(x)+325909584 x^6 \log ^{17}(x)-263014752 x^5 \log ^{19}(x)+156556400 x^4 \log ^{21}(x)-66830400 x^3 \log ^{23}(x)+19380816 x^2 \log ^{25}(x)-3423392 x \log ^{27}(x)+278256 \log ^{29}(x))+e^{-12+4 e^x} (-136 x^{15}+10200 x^{14} \log ^2(x)-166600 x^{13} \log ^4(x)+1299480 x^{12} \log ^6(x)-6126120 x^{11} \log ^8(x)+19467448 x^{10} \log ^{10}(x)-44244200 x^9 \log ^{12}(x)+74388600 x^8 \log ^{14}(x)-94225560 x^7 \log ^{16}(x)+90530440 x^6 \log ^{18}(x)-65753688 x^5 \log ^{20}(x)+35581000 x^4 \log ^{22}(x)-13923000 x^3 \log ^{24}(x)+3727080 x^2 \log ^{26}(x)-611320 x \log ^{28}(x)+46376 \log ^{30}(x))+e^{-9+3 e^x} (-544 x^{15} \log (x)+13600 x^{14} \log ^3(x)-133280 x^{13} \log ^5(x)+742560 x^{12} \log ^7(x)-2722720 x^{11} \log ^9(x)+7079072 x^{10} \log ^{11}(x)-13613600 x^9 \log ^{13}(x)+19836960 x^8 \log ^{15}(x)-22170720 x^7 \log ^{17}(x)+19059040 x^6 \log ^{19}(x)-12524512 x^5 \log ^{21}(x)+6188000 x^4 \log ^{23}(x)-2227680 x^3 \log ^{25}(x)+552160 x^2 \log ^{27}(x)-84320 x \log ^{29}(x)+5984 \log ^{31}(x))+e^{-6+2 e^x} (17 x^{16}-816 x^{15} \log ^2(x)+10200 x^{14} \log ^4(x)-66640 x^{13} \log ^6(x)+278460 x^{12} \log ^8(x)-816816 x^{11} \log ^{10}(x)+1769768 x^{10} \log ^{12}(x)-2917200 x^9 \log ^{14}(x)+3719430 x^8 \log ^{16}(x)-3695120 x^7 \log ^{18}(x)+2858856 x^6 \log ^{20}(x)-1707888 x^5 \log ^{22}(x)+773500 x^4 \log ^{24}(x)-257040 x^3 \log ^{26}(x)+59160 x^2 \log ^{28}(x)-8432 x \log ^{30}(x)+561 \log ^{32}(x))+e^{-3+e^x} (34 x^{16} \log (x)-544 x^{15} \log ^3(x)+4080 x^{14} \log ^5(x)-19040 x^{13} \log ^7(x)+61880 x^{12} \log ^9(x)-148512 x^{11} \log ^{11}(x)+272272 x^{10} \log ^{13}(x)-388960 x^9 \log ^{15}(x)+437580 x^8 \log ^{17}(x)-388960 x^7 \log ^{19}(x)+272272 x^6 \log ^{21}(x)-148512 x^5 \log ^{23}(x)+61880 x^4 \log ^{25}(x)-19040 x^3 \log ^{27}(x)+4080 x^2 \log ^{29}(x)-544 x \log ^{31}(x)+34 \log ^{33}(x))} \, dx\)

Optimal. Leaf size=21 \[ \frac {2 x}{\left (-x+\left (e^{-3+e^x}+\log (x)\right )^2\right )^{16}} \]

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(30*x + E^(-6 + 2*E^x)*(2 - 64*E^x*x) - 64*Log[x] + 2*Log[x]^2 + E^(-3 + E^x)*(-64 + (4 - 64*E^x*x)*Log[x]
))/(E^(-102 + 34*E^x) - x^17 + 34*E^(-99 + 33*E^x)*Log[x] + 17*x^16*Log[x]^2 - 136*x^15*Log[x]^4 + 680*x^14*Lo
g[x]^6 - 2380*x^13*Log[x]^8 + 6188*x^12*Log[x]^10 - 12376*x^11*Log[x]^12 + 19448*x^10*Log[x]^14 - 24310*x^9*Lo
g[x]^16 + 24310*x^8*Log[x]^18 - 19448*x^7*Log[x]^20 + 12376*x^6*Log[x]^22 - 6188*x^5*Log[x]^24 + 2380*x^4*Log[
x]^26 - 680*x^3*Log[x]^28 + 136*x^2*Log[x]^30 - 17*x*Log[x]^32 + Log[x]^34 + E^(-96 + 32*E^x)*(-17*x + 561*Log
[x]^2) + E^(-93 + 31*E^x)*(-544*x*Log[x] + 5984*Log[x]^3) + E^(-90 + 30*E^x)*(136*x^2 - 8432*x*Log[x]^2 + 4637
6*Log[x]^4) + E^(-87 + 29*E^x)*(4080*x^2*Log[x] - 84320*x*Log[x]^3 + 278256*Log[x]^5) + E^(-84 + 28*E^x)*(-680
*x^3 + 59160*x^2*Log[x]^2 - 611320*x*Log[x]^4 + 1344904*Log[x]^6) + E^(-81 + 27*E^x)*(-19040*x^3*Log[x] + 5521
60*x^2*Log[x]^3 - 3423392*x*Log[x]^5 + 5379616*Log[x]^7) + E^(-78 + 26*E^x)*(2380*x^4 - 257040*x^3*Log[x]^2 +
3727080*x^2*Log[x]^4 - 15405264*x*Log[x]^6 + 18156204*Log[x]^8) + E^(-75 + 25*E^x)*(61880*x^4*Log[x] - 2227680
*x^3*Log[x]^3 + 19380816*x^2*Log[x]^5 - 57219552*x*Log[x]^7 + 52451256*Log[x]^9) + E^(-72 + 24*E^x)*(-6188*x^5
 + 773500*x^4*Log[x]^2 - 13923000*x^3*Log[x]^4 + 80753400*x^2*Log[x]^6 - 178811100*x*Log[x]^8 + 131128140*Log[
x]^10) + E^(-69 + 23*E^x)*(-148512*x^5*Log[x] + 6188000*x^4*Log[x]^3 - 66830400*x^3*Log[x]^5 + 276868800*x^2*L
og[x]^7 - 476829600*x*Log[x]^9 + 286097760*Log[x]^11) + E^(-66 + 22*E^x)*(12376*x^6 - 1707888*x^5*Log[x]^2 + 3
5581000*x^4*Log[x]^4 - 256183200*x^3*Log[x]^6 + 795997800*x^2*Log[x]^8 - 1096708080*x*Log[x]^10 + 548354040*Lo
g[x]^12) + E^(-63 + 21*E^x)*(272272*x^6*Log[x] - 12524512*x^5*Log[x]^3 + 156556400*x^4*Log[x]^5 - 805147200*x^
3*Log[x]^7 + 1945772400*x^2*Log[x]^9 - 2193416160*x*Log[x]^11 + 927983760*Log[x]^13) + E^(-60 + 20*E^x)*(-1944
8*x^7 + 2858856*x^6*Log[x]^2 - 65753688*x^5*Log[x]^4 + 547947400*x^4*Log[x]^6 - 2113511400*x^3*Log[x]^8 + 4086
122040*x^2*Log[x]^10 - 3838478280*x*Log[x]^12 + 1391975640*Log[x]^14) + E^(-57 + 19*E^x)*(-388960*x^7*Log[x] +
 19059040*x^6*Log[x]^3 - 263014752*x^5*Log[x]^5 + 1565564000*x^4*Log[x]^7 - 4696692000*x^3*Log[x]^9 + 74293128
00*x^2*Log[x]^11 - 5905351200*x*Log[x]^13 + 1855967520*Log[x]^15) + E^(-54 + 18*E^x)*(24310*x^8 - 3695120*x^7*
Log[x]^2 + 90530440*x^6*Log[x]^4 - 832880048*x^5*Log[x]^6 + 3718214500*x^4*Log[x]^8 - 8923714800*x^3*Log[x]^10
 + 11763078600*x^2*Log[x]^12 - 8014405200*x*Log[x]^14 + 2203961430*Log[x]^16) + E^(-51 + 17*E^x)*(437580*x^8*L
og[x] - 22170720*x^7*Log[x]^3 + 325909584*x^6*Log[x]^5 - 2141691552*x^5*Log[x]^7 + 7436429000*x^4*Log[x]^9 - 1
4602442400*x^3*Log[x]^11 + 16287339600*x^2*Log[x]^13 - 9617286240*x*Log[x]^15 + 2333606220*Log[x]^17) + E^(-48
 + 16*E^x)*(-24310*x^9 + 3719430*x^8*Log[x]^2 - 94225560*x^7*Log[x]^4 + 923410488*x^6*Log[x]^6 - 4551094548*x^
5*Log[x]^8 + 12641929300*x^4*Log[x]^10 - 20686793400*x^3*Log[x]^12 + 19777483800*x^2*Log[x]^14 - 10218366630*x
*Log[x]^16 + 2203961430*Log[x]^18) + E^(-45 + 15*E^x)*(-388960*x^9*Log[x] + 19836960*x^8*Log[x]^3 - 301521792*
x^7*Log[x]^5 + 2110652544*x^6*Log[x]^7 - 8090834752*x^5*Log[x]^9 + 18388260800*x^4*Log[x]^11 - 25460668800*x^3
*Log[x]^13 + 21095982720*x^2*Log[x]^15 - 9617286240*x*Log[x]^17 + 1855967520*Log[x]^19) + E^(-42 + 14*E^x)*(19
448*x^10 - 2917200*x^9*Log[x]^2 + 74388600*x^8*Log[x]^4 - 753804480*x^7*Log[x]^6 + 3957473520*x^6*Log[x]^8 - 1
2136252128*x^5*Log[x]^10 + 22985326000*x^4*Log[x]^12 - 27279288000*x^3*Log[x]^14 + 19777483800*x^2*Log[x]^16 -
 8014405200*x*Log[x]^18 + 1391975640*Log[x]^20) + E^(-39 + 13*E^x)*(272272*x^10*Log[x] - 13613600*x^9*Log[x]^3
 + 208288080*x^8*Log[x]^5 - 1507608960*x^7*Log[x]^7 + 6156069920*x^6*Log[x]^9 - 15446139072*x^5*Log[x]^11 + 24
753428000*x^4*Log[x]^13 - 25460668800*x^3*Log[x]^15 + 16287339600*x^2*Log[x]^17 - 5905351200*x*Log[x]^19 + 927
983760*Log[x]^21) + E^(-36 + 12*E^x)*(-12376*x^11 + 1769768*x^10*Log[x]^2 - 44244200*x^9*Log[x]^4 + 451290840*
x^8*Log[x]^6 - 2449864560*x^7*Log[x]^8 + 8002890896*x^6*Log[x]^10 - 16733317328*x^5*Log[x]^12 + 22985326000*x^
4*Log[x]^14 - 20686793400*x^3*Log[x]^16 + 11763078600*x^2*Log[x]^18 - 3838478280*x*Log[x]^20 + 548354040*Log[x
]^22) + E^(-33 + 11*E^x)*(-148512*x^11*Log[x] + 7079072*x^10*Log[x]^3 - 106186080*x^9*Log[x]^5 + 773641440*x^8
*Log[x]^7 - 3266486080*x^7*Log[x]^9 + 8730426432*x^6*Log[x]^11 - 15446139072*x^5*Log[x]^13 + 18388260800*x^4*L
og[x]^15 - 14602442400*x^3*Log[x]^17 + 7429312800*x^2*Log[x]^19 - 2193416160*x*Log[x]^21 + 286097760*Log[x]^23
) + E^(-30 + 10*E^x)*(6188*x^12 - 816816*x^11*Log[x]^2 + 19467448*x^10*Log[x]^4 - 194674480*x^9*Log[x]^6 + 106
3756980*x^8*Log[x]^8 - 3593134688*x^7*Log[x]^10 + 8002890896*x^6*Log[x]^12 - 12136252128*x^5*Log[x]^14 + 12641
929300*x^4*Log[x]^16 - 8923714800*x^3*Log[x]^18 + 4086122040*x^2*Log[x]^20 - 1096708080*x*Log[x]^22 + 13112814
0*Log[x]^24) + E^(-27 + 9*E^x)*(61880*x^12*Log[x] - 2722720*x^11*Log[x]^3 + 38934896*x^10*Log[x]^5 - 278106400
*x^9*Log[x]^7 + 1181952200*x^8*Log[x]^9 - 3266486080*x^7*Log[x]^11 + 6156069920*x^6*Log[x]^13 - 8090834752*x^5
*Log[x]^15 + 7436429000*x^4*Log[x]^17 - 4696692000*x^3*Log[x]^19 + 1945772400*x^2*Log[x]^21 - 476829600*x*Log[
x]^23 + 52451256*Log[x]^25) + E^(-24 + 8*E^x)*(-2380*x^13 + 278460*x^12*Log[x]^2 - 6126120*x^11*Log[x]^4 + 584
02344*x^10*Log[x]^6 - 312869700*x^9*Log[x]^8 + 1063756980*x^8*Log[x]^10 - 2449864560*x^7*Log[x]^12 + 395747352
0*x^6*Log[x]^14 - 4551094548*x^5*Log[x]^16 + 3718214500*x^4*Log[x]^18 - 2113511400*x^3*Log[x]^20 + 795997800*x
^2*Log[x]^22 - 178811100*x*Log[x]^24 + 18156204*Log[x]^26) + E^(-21 + 7*E^x)*(-19040*x^13*Log[x] + 742560*x^12
*Log[x]^3 - 9801792*x^11*Log[x]^5 + 66745536*x^10*Log[x]^7 - 278106400*x^9*Log[x]^9 + 773641440*x^8*Log[x]^11
- 1507608960*x^7*Log[x]^13 + 2110652544*x^6*Log[x]^15 - 2141691552*x^5*Log[x]^17 + 1565564000*x^4*Log[x]^19 -
805147200*x^3*Log[x]^21 + 276868800*x^2*Log[x]^23 - 57219552*x*Log[x]^25 + 5379616*Log[x]^27) + E^(-18 + 6*E^x
)*(680*x^14 - 66640*x^13*Log[x]^2 + 1299480*x^12*Log[x]^4 - 11435424*x^11*Log[x]^6 + 58402344*x^10*Log[x]^8 -
194674480*x^9*Log[x]^10 + 451290840*x^8*Log[x]^12 - 753804480*x^7*Log[x]^14 + 923410488*x^6*Log[x]^16 - 832880
048*x^5*Log[x]^18 + 547947400*x^4*Log[x]^20 - 256183200*x^3*Log[x]^22 + 80753400*x^2*Log[x]^24 - 15405264*x*Lo
g[x]^26 + 1344904*Log[x]^28) + E^(-15 + 5*E^x)*(4080*x^14*Log[x] - 133280*x^13*Log[x]^3 + 1559376*x^12*Log[x]^
5 - 9801792*x^11*Log[x]^7 + 38934896*x^10*Log[x]^9 - 106186080*x^9*Log[x]^11 + 208288080*x^8*Log[x]^13 - 30152
1792*x^7*Log[x]^15 + 325909584*x^6*Log[x]^17 - 263014752*x^5*Log[x]^19 + 156556400*x^4*Log[x]^21 - 66830400*x^
3*Log[x]^23 + 19380816*x^2*Log[x]^25 - 3423392*x*Log[x]^27 + 278256*Log[x]^29) + E^(-12 + 4*E^x)*(-136*x^15 +
10200*x^14*Log[x]^2 - 166600*x^13*Log[x]^4 + 1299480*x^12*Log[x]^6 - 6126120*x^11*Log[x]^8 + 19467448*x^10*Log
[x]^10 - 44244200*x^9*Log[x]^12 + 74388600*x^8*Log[x]^14 - 94225560*x^7*Log[x]^16 + 90530440*x^6*Log[x]^18 - 6
5753688*x^5*Log[x]^20 + 35581000*x^4*Log[x]^22 - 13923000*x^3*Log[x]^24 + 3727080*x^2*Log[x]^26 - 611320*x*Log
[x]^28 + 46376*Log[x]^30) + E^(-9 + 3*E^x)*(-544*x^15*Log[x] + 13600*x^14*Log[x]^3 - 133280*x^13*Log[x]^5 + 74
2560*x^12*Log[x]^7 - 2722720*x^11*Log[x]^9 + 7079072*x^10*Log[x]^11 - 13613600*x^9*Log[x]^13 + 19836960*x^8*Lo
g[x]^15 - 22170720*x^7*Log[x]^17 + 19059040*x^6*Log[x]^19 - 12524512*x^5*Log[x]^21 + 6188000*x^4*Log[x]^23 - 2
227680*x^3*Log[x]^25 + 552160*x^2*Log[x]^27 - 84320*x*Log[x]^29 + 5984*Log[x]^31) + E^(-6 + 2*E^x)*(17*x^16 -
816*x^15*Log[x]^2 + 10200*x^14*Log[x]^4 - 66640*x^13*Log[x]^6 + 278460*x^12*Log[x]^8 - 816816*x^11*Log[x]^10 +
 1769768*x^10*Log[x]^12 - 2917200*x^9*Log[x]^14 + 3719430*x^8*Log[x]^16 - 3695120*x^7*Log[x]^18 + 2858856*x^6*
Log[x]^20 - 1707888*x^5*Log[x]^22 + 773500*x^4*Log[x]^24 - 257040*x^3*Log[x]^26 + 59160*x^2*Log[x]^28 - 8432*x
*Log[x]^30 + 561*Log[x]^32) + E^(-3 + E^x)*(34*x^16*Log[x] - 544*x^15*Log[x]^3 + 4080*x^14*Log[x]^5 - 19040*x^
13*Log[x]^7 + 61880*x^12*Log[x]^9 - 148512*x^11*Log[x]^11 + 272272*x^10*Log[x]^13 - 388960*x^9*Log[x]^15 + 437
580*x^8*Log[x]^17 - 388960*x^7*Log[x]^19 + 272272*x^6*Log[x]^21 - 148512*x^5*Log[x]^23 + 61880*x^4*Log[x]^25 -
 19040*x^3*Log[x]^27 + 4080*x^2*Log[x]^29 - 544*x*Log[x]^31 + 34*Log[x]^33)),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 2.96, size = 41, normalized size = 1.95 \begin {gather*} \frac {2 e^{96} x}{\left (e^{2 e^x}-e^6 x+2 e^{3+e^x} \log (x)+e^6 \log ^2(x)\right )^{16}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(30*x + E^(-6 + 2*E^x)*(2 - 64*E^x*x) - 64*Log[x] + 2*Log[x]^2 + E^(-3 + E^x)*(-64 + (4 - 64*E^x*x)*
Log[x]))/(E^(-102 + 34*E^x) - x^17 + 34*E^(-99 + 33*E^x)*Log[x] + 17*x^16*Log[x]^2 - 136*x^15*Log[x]^4 + 680*x
^14*Log[x]^6 - 2380*x^13*Log[x]^8 + 6188*x^12*Log[x]^10 - 12376*x^11*Log[x]^12 + 19448*x^10*Log[x]^14 - 24310*
x^9*Log[x]^16 + 24310*x^8*Log[x]^18 - 19448*x^7*Log[x]^20 + 12376*x^6*Log[x]^22 - 6188*x^5*Log[x]^24 + 2380*x^
4*Log[x]^26 - 680*x^3*Log[x]^28 + 136*x^2*Log[x]^30 - 17*x*Log[x]^32 + Log[x]^34 + E^(-96 + 32*E^x)*(-17*x + 5
61*Log[x]^2) + E^(-93 + 31*E^x)*(-544*x*Log[x] + 5984*Log[x]^3) + E^(-90 + 30*E^x)*(136*x^2 - 8432*x*Log[x]^2
+ 46376*Log[x]^4) + E^(-87 + 29*E^x)*(4080*x^2*Log[x] - 84320*x*Log[x]^3 + 278256*Log[x]^5) + E^(-84 + 28*E^x)
*(-680*x^3 + 59160*x^2*Log[x]^2 - 611320*x*Log[x]^4 + 1344904*Log[x]^6) + E^(-81 + 27*E^x)*(-19040*x^3*Log[x]
+ 552160*x^2*Log[x]^3 - 3423392*x*Log[x]^5 + 5379616*Log[x]^7) + E^(-78 + 26*E^x)*(2380*x^4 - 257040*x^3*Log[x
]^2 + 3727080*x^2*Log[x]^4 - 15405264*x*Log[x]^6 + 18156204*Log[x]^8) + E^(-75 + 25*E^x)*(61880*x^4*Log[x] - 2
227680*x^3*Log[x]^3 + 19380816*x^2*Log[x]^5 - 57219552*x*Log[x]^7 + 52451256*Log[x]^9) + E^(-72 + 24*E^x)*(-61
88*x^5 + 773500*x^4*Log[x]^2 - 13923000*x^3*Log[x]^4 + 80753400*x^2*Log[x]^6 - 178811100*x*Log[x]^8 + 13112814
0*Log[x]^10) + E^(-69 + 23*E^x)*(-148512*x^5*Log[x] + 6188000*x^4*Log[x]^3 - 66830400*x^3*Log[x]^5 + 276868800
*x^2*Log[x]^7 - 476829600*x*Log[x]^9 + 286097760*Log[x]^11) + E^(-66 + 22*E^x)*(12376*x^6 - 1707888*x^5*Log[x]
^2 + 35581000*x^4*Log[x]^4 - 256183200*x^3*Log[x]^6 + 795997800*x^2*Log[x]^8 - 1096708080*x*Log[x]^10 + 548354
040*Log[x]^12) + E^(-63 + 21*E^x)*(272272*x^6*Log[x] - 12524512*x^5*Log[x]^3 + 156556400*x^4*Log[x]^5 - 805147
200*x^3*Log[x]^7 + 1945772400*x^2*Log[x]^9 - 2193416160*x*Log[x]^11 + 927983760*Log[x]^13) + E^(-60 + 20*E^x)*
(-19448*x^7 + 2858856*x^6*Log[x]^2 - 65753688*x^5*Log[x]^4 + 547947400*x^4*Log[x]^6 - 2113511400*x^3*Log[x]^8
+ 4086122040*x^2*Log[x]^10 - 3838478280*x*Log[x]^12 + 1391975640*Log[x]^14) + E^(-57 + 19*E^x)*(-388960*x^7*Lo
g[x] + 19059040*x^6*Log[x]^3 - 263014752*x^5*Log[x]^5 + 1565564000*x^4*Log[x]^7 - 4696692000*x^3*Log[x]^9 + 74
29312800*x^2*Log[x]^11 - 5905351200*x*Log[x]^13 + 1855967520*Log[x]^15) + E^(-54 + 18*E^x)*(24310*x^8 - 369512
0*x^7*Log[x]^2 + 90530440*x^6*Log[x]^4 - 832880048*x^5*Log[x]^6 + 3718214500*x^4*Log[x]^8 - 8923714800*x^3*Log
[x]^10 + 11763078600*x^2*Log[x]^12 - 8014405200*x*Log[x]^14 + 2203961430*Log[x]^16) + E^(-51 + 17*E^x)*(437580
*x^8*Log[x] - 22170720*x^7*Log[x]^3 + 325909584*x^6*Log[x]^5 - 2141691552*x^5*Log[x]^7 + 7436429000*x^4*Log[x]
^9 - 14602442400*x^3*Log[x]^11 + 16287339600*x^2*Log[x]^13 - 9617286240*x*Log[x]^15 + 2333606220*Log[x]^17) +
E^(-48 + 16*E^x)*(-24310*x^9 + 3719430*x^8*Log[x]^2 - 94225560*x^7*Log[x]^4 + 923410488*x^6*Log[x]^6 - 4551094
548*x^5*Log[x]^8 + 12641929300*x^4*Log[x]^10 - 20686793400*x^3*Log[x]^12 + 19777483800*x^2*Log[x]^14 - 1021836
6630*x*Log[x]^16 + 2203961430*Log[x]^18) + E^(-45 + 15*E^x)*(-388960*x^9*Log[x] + 19836960*x^8*Log[x]^3 - 3015
21792*x^7*Log[x]^5 + 2110652544*x^6*Log[x]^7 - 8090834752*x^5*Log[x]^9 + 18388260800*x^4*Log[x]^11 - 254606688
00*x^3*Log[x]^13 + 21095982720*x^2*Log[x]^15 - 9617286240*x*Log[x]^17 + 1855967520*Log[x]^19) + E^(-42 + 14*E^
x)*(19448*x^10 - 2917200*x^9*Log[x]^2 + 74388600*x^8*Log[x]^4 - 753804480*x^7*Log[x]^6 + 3957473520*x^6*Log[x]
^8 - 12136252128*x^5*Log[x]^10 + 22985326000*x^4*Log[x]^12 - 27279288000*x^3*Log[x]^14 + 19777483800*x^2*Log[x
]^16 - 8014405200*x*Log[x]^18 + 1391975640*Log[x]^20) + E^(-39 + 13*E^x)*(272272*x^10*Log[x] - 13613600*x^9*Lo
g[x]^3 + 208288080*x^8*Log[x]^5 - 1507608960*x^7*Log[x]^7 + 6156069920*x^6*Log[x]^9 - 15446139072*x^5*Log[x]^1
1 + 24753428000*x^4*Log[x]^13 - 25460668800*x^3*Log[x]^15 + 16287339600*x^2*Log[x]^17 - 5905351200*x*Log[x]^19
 + 927983760*Log[x]^21) + E^(-36 + 12*E^x)*(-12376*x^11 + 1769768*x^10*Log[x]^2 - 44244200*x^9*Log[x]^4 + 4512
90840*x^8*Log[x]^6 - 2449864560*x^7*Log[x]^8 + 8002890896*x^6*Log[x]^10 - 16733317328*x^5*Log[x]^12 + 22985326
000*x^4*Log[x]^14 - 20686793400*x^3*Log[x]^16 + 11763078600*x^2*Log[x]^18 - 3838478280*x*Log[x]^20 + 548354040
*Log[x]^22) + E^(-33 + 11*E^x)*(-148512*x^11*Log[x] + 7079072*x^10*Log[x]^3 - 106186080*x^9*Log[x]^5 + 7736414
40*x^8*Log[x]^7 - 3266486080*x^7*Log[x]^9 + 8730426432*x^6*Log[x]^11 - 15446139072*x^5*Log[x]^13 + 18388260800
*x^4*Log[x]^15 - 14602442400*x^3*Log[x]^17 + 7429312800*x^2*Log[x]^19 - 2193416160*x*Log[x]^21 + 286097760*Log
[x]^23) + E^(-30 + 10*E^x)*(6188*x^12 - 816816*x^11*Log[x]^2 + 19467448*x^10*Log[x]^4 - 194674480*x^9*Log[x]^6
 + 1063756980*x^8*Log[x]^8 - 3593134688*x^7*Log[x]^10 + 8002890896*x^6*Log[x]^12 - 12136252128*x^5*Log[x]^14 +
 12641929300*x^4*Log[x]^16 - 8923714800*x^3*Log[x]^18 + 4086122040*x^2*Log[x]^20 - 1096708080*x*Log[x]^22 + 13
1128140*Log[x]^24) + E^(-27 + 9*E^x)*(61880*x^12*Log[x] - 2722720*x^11*Log[x]^3 + 38934896*x^10*Log[x]^5 - 278
106400*x^9*Log[x]^7 + 1181952200*x^8*Log[x]^9 - 3266486080*x^7*Log[x]^11 + 6156069920*x^6*Log[x]^13 - 80908347
52*x^5*Log[x]^15 + 7436429000*x^4*Log[x]^17 - 4696692000*x^3*Log[x]^19 + 1945772400*x^2*Log[x]^21 - 476829600*
x*Log[x]^23 + 52451256*Log[x]^25) + E^(-24 + 8*E^x)*(-2380*x^13 + 278460*x^12*Log[x]^2 - 6126120*x^11*Log[x]^4
 + 58402344*x^10*Log[x]^6 - 312869700*x^9*Log[x]^8 + 1063756980*x^8*Log[x]^10 - 2449864560*x^7*Log[x]^12 + 395
7473520*x^6*Log[x]^14 - 4551094548*x^5*Log[x]^16 + 3718214500*x^4*Log[x]^18 - 2113511400*x^3*Log[x]^20 + 79599
7800*x^2*Log[x]^22 - 178811100*x*Log[x]^24 + 18156204*Log[x]^26) + E^(-21 + 7*E^x)*(-19040*x^13*Log[x] + 74256
0*x^12*Log[x]^3 - 9801792*x^11*Log[x]^5 + 66745536*x^10*Log[x]^7 - 278106400*x^9*Log[x]^9 + 773641440*x^8*Log[
x]^11 - 1507608960*x^7*Log[x]^13 + 2110652544*x^6*Log[x]^15 - 2141691552*x^5*Log[x]^17 + 1565564000*x^4*Log[x]
^19 - 805147200*x^3*Log[x]^21 + 276868800*x^2*Log[x]^23 - 57219552*x*Log[x]^25 + 5379616*Log[x]^27) + E^(-18 +
 6*E^x)*(680*x^14 - 66640*x^13*Log[x]^2 + 1299480*x^12*Log[x]^4 - 11435424*x^11*Log[x]^6 + 58402344*x^10*Log[x
]^8 - 194674480*x^9*Log[x]^10 + 451290840*x^8*Log[x]^12 - 753804480*x^7*Log[x]^14 + 923410488*x^6*Log[x]^16 -
832880048*x^5*Log[x]^18 + 547947400*x^4*Log[x]^20 - 256183200*x^3*Log[x]^22 + 80753400*x^2*Log[x]^24 - 1540526
4*x*Log[x]^26 + 1344904*Log[x]^28) + E^(-15 + 5*E^x)*(4080*x^14*Log[x] - 133280*x^13*Log[x]^3 + 1559376*x^12*L
og[x]^5 - 9801792*x^11*Log[x]^7 + 38934896*x^10*Log[x]^9 - 106186080*x^9*Log[x]^11 + 208288080*x^8*Log[x]^13 -
 301521792*x^7*Log[x]^15 + 325909584*x^6*Log[x]^17 - 263014752*x^5*Log[x]^19 + 156556400*x^4*Log[x]^21 - 66830
400*x^3*Log[x]^23 + 19380816*x^2*Log[x]^25 - 3423392*x*Log[x]^27 + 278256*Log[x]^29) + E^(-12 + 4*E^x)*(-136*x
^15 + 10200*x^14*Log[x]^2 - 166600*x^13*Log[x]^4 + 1299480*x^12*Log[x]^6 - 6126120*x^11*Log[x]^8 + 19467448*x^
10*Log[x]^10 - 44244200*x^9*Log[x]^12 + 74388600*x^8*Log[x]^14 - 94225560*x^7*Log[x]^16 + 90530440*x^6*Log[x]^
18 - 65753688*x^5*Log[x]^20 + 35581000*x^4*Log[x]^22 - 13923000*x^3*Log[x]^24 + 3727080*x^2*Log[x]^26 - 611320
*x*Log[x]^28 + 46376*Log[x]^30) + E^(-9 + 3*E^x)*(-544*x^15*Log[x] + 13600*x^14*Log[x]^3 - 133280*x^13*Log[x]^
5 + 742560*x^12*Log[x]^7 - 2722720*x^11*Log[x]^9 + 7079072*x^10*Log[x]^11 - 13613600*x^9*Log[x]^13 + 19836960*
x^8*Log[x]^15 - 22170720*x^7*Log[x]^17 + 19059040*x^6*Log[x]^19 - 12524512*x^5*Log[x]^21 + 6188000*x^4*Log[x]^
23 - 2227680*x^3*Log[x]^25 + 552160*x^2*Log[x]^27 - 84320*x*Log[x]^29 + 5984*Log[x]^31) + E^(-6 + 2*E^x)*(17*x
^16 - 816*x^15*Log[x]^2 + 10200*x^14*Log[x]^4 - 66640*x^13*Log[x]^6 + 278460*x^12*Log[x]^8 - 816816*x^11*Log[x
]^10 + 1769768*x^10*Log[x]^12 - 2917200*x^9*Log[x]^14 + 3719430*x^8*Log[x]^16 - 3695120*x^7*Log[x]^18 + 285885
6*x^6*Log[x]^20 - 1707888*x^5*Log[x]^22 + 773500*x^4*Log[x]^24 - 257040*x^3*Log[x]^26 + 59160*x^2*Log[x]^28 -
8432*x*Log[x]^30 + 561*Log[x]^32) + E^(-3 + E^x)*(34*x^16*Log[x] - 544*x^15*Log[x]^3 + 4080*x^14*Log[x]^5 - 19
040*x^13*Log[x]^7 + 61880*x^12*Log[x]^9 - 148512*x^11*Log[x]^11 + 272272*x^10*Log[x]^13 - 388960*x^9*Log[x]^15
 + 437580*x^8*Log[x]^17 - 388960*x^7*Log[x]^19 + 272272*x^6*Log[x]^21 - 148512*x^5*Log[x]^23 + 61880*x^4*Log[x
]^25 - 19040*x^3*Log[x]^27 + 4080*x^2*Log[x]^29 - 544*x*Log[x]^31 + 34*Log[x]^33)),x]

[Out]

(2*E^96*x)/(E^(2*E^x) - E^6*x + 2*E^(3 + E^x)*Log[x] + E^6*Log[x]^2)^16

________________________________________________________________________________________

fricas [B]  time = 1.59, size = 2650, normalized size = 126.19 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-64*exp(x)*x+2)*exp(exp(x)-3)^2+((-64*exp(x)*x+4)*log(x)-64)*exp(exp(x)-3)+2*log(x)^2-64*log(x)+30
*x)/(-17*x*log(x)^32+136*x^2*log(x)^30-680*x^3*log(x)^28+2380*x^4*log(x)^26-6188*x^5*log(x)^24+12376*x^6*log(x
)^22-19448*x^7*log(x)^20+24310*x^8*log(x)^18-24310*x^9*log(x)^16+19448*x^10*log(x)^14-12376*x^11*log(x)^12+618
8*x^12*log(x)^10-2380*x^13*log(x)^8+680*x^14*log(x)^6-136*x^15*log(x)^4+17*x^16*log(x)^2+34*log(x)*exp(exp(x)-
3)^33-x^17+log(x)^34+exp(exp(x)-3)^34+(2203961430*log(x)^18-10218366630*x*log(x)^16+19777483800*x^2*log(x)^14-
20686793400*x^3*log(x)^12+12641929300*x^4*log(x)^10-4551094548*x^5*log(x)^8+923410488*x^6*log(x)^6-94225560*x^
7*log(x)^4+3719430*x^8*log(x)^2-24310*x^9)*exp(exp(x)-3)^16+(1855967520*log(x)^19-9617286240*x*log(x)^17+21095
982720*x^2*log(x)^15-25460668800*x^3*log(x)^13+18388260800*x^4*log(x)^11-8090834752*x^5*log(x)^9+2110652544*x^
6*log(x)^7-301521792*x^7*log(x)^5+19836960*x^8*log(x)^3-388960*x^9*log(x))*exp(exp(x)-3)^15+(1391975640*log(x)
^20-8014405200*x*log(x)^18+19777483800*x^2*log(x)^16-27279288000*x^3*log(x)^14+22985326000*x^4*log(x)^12-12136
252128*x^5*log(x)^10+3957473520*x^6*log(x)^8-753804480*x^7*log(x)^6+74388600*x^8*log(x)^4-2917200*x^9*log(x)^2
+19448*x^10)*exp(exp(x)-3)^14+(927983760*log(x)^21-5905351200*x*log(x)^19+16287339600*x^2*log(x)^17-2546066880
0*x^3*log(x)^15+24753428000*x^4*log(x)^13-15446139072*x^5*log(x)^11+6156069920*x^6*log(x)^9-1507608960*x^7*log
(x)^7+208288080*x^8*log(x)^5-13613600*x^9*log(x)^3+272272*x^10*log(x))*exp(exp(x)-3)^13+(548354040*log(x)^22-3
838478280*x*log(x)^20+11763078600*x^2*log(x)^18-20686793400*x^3*log(x)^16+22985326000*x^4*log(x)^14-1673331732
8*x^5*log(x)^12+8002890896*x^6*log(x)^10-2449864560*x^7*log(x)^8+451290840*x^8*log(x)^6-44244200*x^9*log(x)^4+
1769768*x^10*log(x)^2-12376*x^11)*exp(exp(x)-3)^12+(286097760*log(x)^23-2193416160*x*log(x)^21+7429312800*x^2*
log(x)^19-14602442400*x^3*log(x)^17+18388260800*x^4*log(x)^15-15446139072*x^5*log(x)^13+8730426432*x^6*log(x)^
11-3266486080*x^7*log(x)^9+773641440*x^8*log(x)^7-106186080*x^9*log(x)^5+7079072*x^10*log(x)^3-148512*x^11*log
(x))*exp(exp(x)-3)^11+(131128140*log(x)^24-1096708080*x*log(x)^22+4086122040*x^2*log(x)^20-8923714800*x^3*log(
x)^18+12641929300*x^4*log(x)^16-12136252128*x^5*log(x)^14+8002890896*x^6*log(x)^12-3593134688*x^7*log(x)^10+10
63756980*x^8*log(x)^8-194674480*x^9*log(x)^6+19467448*x^10*log(x)^4-816816*x^11*log(x)^2+6188*x^12)*exp(exp(x)
-3)^10+(52451256*log(x)^25-476829600*x*log(x)^23+1945772400*x^2*log(x)^21-4696692000*x^3*log(x)^19+7436429000*
x^4*log(x)^17-8090834752*x^5*log(x)^15+6156069920*x^6*log(x)^13-3266486080*x^7*log(x)^11+1181952200*x^8*log(x)
^9-278106400*x^9*log(x)^7+38934896*x^10*log(x)^5-2722720*x^11*log(x)^3+61880*x^12*log(x))*exp(exp(x)-3)^9+(181
56204*log(x)^26-178811100*x*log(x)^24+795997800*x^2*log(x)^22-2113511400*x^3*log(x)^20+3718214500*x^4*log(x)^1
8-4551094548*x^5*log(x)^16+3957473520*x^6*log(x)^14-2449864560*x^7*log(x)^12+1063756980*x^8*log(x)^10-31286970
0*x^9*log(x)^8+58402344*x^10*log(x)^6-6126120*x^11*log(x)^4+278460*x^12*log(x)^2-2380*x^13)*exp(exp(x)-3)^8+(5
379616*log(x)^27-57219552*x*log(x)^25+276868800*x^2*log(x)^23-805147200*x^3*log(x)^21+1565564000*x^4*log(x)^19
-2141691552*x^5*log(x)^17+2110652544*x^6*log(x)^15-1507608960*x^7*log(x)^13+773641440*x^8*log(x)^11-278106400*
x^9*log(x)^9+66745536*x^10*log(x)^7-9801792*x^11*log(x)^5+742560*x^12*log(x)^3-19040*x^13*log(x))*exp(exp(x)-3
)^7+(1344904*log(x)^28-15405264*x*log(x)^26+80753400*x^2*log(x)^24-256183200*x^3*log(x)^22+547947400*x^4*log(x
)^20-832880048*x^5*log(x)^18+923410488*x^6*log(x)^16-753804480*x^7*log(x)^14+451290840*x^8*log(x)^12-194674480
*x^9*log(x)^10+58402344*x^10*log(x)^8-11435424*x^11*log(x)^6+1299480*x^12*log(x)^4-66640*x^13*log(x)^2+680*x^1
4)*exp(exp(x)-3)^6+(278256*log(x)^29-3423392*x*log(x)^27+19380816*x^2*log(x)^25-66830400*x^3*log(x)^23+1565564
00*x^4*log(x)^21-263014752*x^5*log(x)^19+325909584*x^6*log(x)^17-301521792*x^7*log(x)^15+208288080*x^8*log(x)^
13-106186080*x^9*log(x)^11+38934896*x^10*log(x)^9-9801792*x^11*log(x)^7+1559376*x^12*log(x)^5-133280*x^13*log(
x)^3+4080*x^14*log(x))*exp(exp(x)-3)^5+(46376*log(x)^30-611320*x*log(x)^28+3727080*x^2*log(x)^26-13923000*x^3*
log(x)^24+35581000*x^4*log(x)^22-65753688*x^5*log(x)^20+90530440*x^6*log(x)^18-94225560*x^7*log(x)^16+74388600
*x^8*log(x)^14-44244200*x^9*log(x)^12+19467448*x^10*log(x)^10-6126120*x^11*log(x)^8+1299480*x^12*log(x)^6-1666
00*x^13*log(x)^4+10200*x^14*log(x)^2-136*x^15)*exp(exp(x)-3)^4+(5984*log(x)^31-84320*x*log(x)^29+552160*x^2*lo
g(x)^27-2227680*x^3*log(x)^25+6188000*x^4*log(x)^23-12524512*x^5*log(x)^21+19059040*x^6*log(x)^19-22170720*x^7
*log(x)^17+19836960*x^8*log(x)^15-13613600*x^9*log(x)^13+7079072*x^10*log(x)^11-2722720*x^11*log(x)^9+742560*x
^12*log(x)^7-133280*x^13*log(x)^5+13600*x^14*log(x)^3-544*x^15*log(x))*exp(exp(x)-3)^3+(561*log(x)^32-8432*x*l
og(x)^30+59160*x^2*log(x)^28-257040*x^3*log(x)^26+773500*x^4*log(x)^24-1707888*x^5*log(x)^22+2858856*x^6*log(x
)^20-3695120*x^7*log(x)^18+3719430*x^8*log(x)^16-2917200*x^9*log(x)^14+1769768*x^10*log(x)^12-816816*x^11*log(
x)^10+278460*x^12*log(x)^8-66640*x^13*log(x)^6+10200*x^14*log(x)^4-816*x^15*log(x)^2+17*x^16)*exp(exp(x)-3)^2+
(34*log(x)^33-544*x*log(x)^31+4080*x^2*log(x)^29-19040*x^3*log(x)^27+61880*x^4*log(x)^25-148512*x^5*log(x)^23+
272272*x^6*log(x)^21-388960*x^7*log(x)^19+437580*x^8*log(x)^17-388960*x^9*log(x)^15+272272*x^10*log(x)^13-1485
12*x^11*log(x)^11+61880*x^12*log(x)^9-19040*x^13*log(x)^7+4080*x^14*log(x)^5-544*x^15*log(x)^3+34*x^16*log(x))
*exp(exp(x)-3)+(561*log(x)^2-17*x)*exp(exp(x)-3)^32+(5984*log(x)^3-544*x*log(x))*exp(exp(x)-3)^31+(46376*log(x
)^4-8432*x*log(x)^2+136*x^2)*exp(exp(x)-3)^30+(278256*log(x)^5-84320*x*log(x)^3+4080*x^2*log(x))*exp(exp(x)-3)
^29+(1344904*log(x)^6-611320*x*log(x)^4+59160*x^2*log(x)^2-680*x^3)*exp(exp(x)-3)^28+(5379616*log(x)^7-3423392
*x*log(x)^5+552160*x^2*log(x)^3-19040*x^3*log(x))*exp(exp(x)-3)^27+(18156204*log(x)^8-15405264*x*log(x)^6+3727
080*x^2*log(x)^4-257040*x^3*log(x)^2+2380*x^4)*exp(exp(x)-3)^26+(52451256*log(x)^9-57219552*x*log(x)^7+1938081
6*x^2*log(x)^5-2227680*x^3*log(x)^3+61880*x^4*log(x))*exp(exp(x)-3)^25+(131128140*log(x)^10-178811100*x*log(x)
^8+80753400*x^2*log(x)^6-13923000*x^3*log(x)^4+773500*x^4*log(x)^2-6188*x^5)*exp(exp(x)-3)^24+(286097760*log(x
)^11-476829600*x*log(x)^9+276868800*x^2*log(x)^7-66830400*x^3*log(x)^5+6188000*x^4*log(x)^3-148512*x^5*log(x))
*exp(exp(x)-3)^23+(548354040*log(x)^12-1096708080*x*log(x)^10+795997800*x^2*log(x)^8-256183200*x^3*log(x)^6+35
581000*x^4*log(x)^4-1707888*x^5*log(x)^2+12376*x^6)*exp(exp(x)-3)^22+(927983760*log(x)^13-2193416160*x*log(x)^
11+1945772400*x^2*log(x)^9-805147200*x^3*log(x)^7+156556400*x^4*log(x)^5-12524512*x^5*log(x)^3+272272*x^6*log(
x))*exp(exp(x)-3)^21+(1391975640*log(x)^14-3838478280*x*log(x)^12+4086122040*x^2*log(x)^10-2113511400*x^3*log(
x)^8+547947400*x^4*log(x)^6-65753688*x^5*log(x)^4+2858856*x^6*log(x)^2-19448*x^7)*exp(exp(x)-3)^20+(1855967520
*log(x)^15-5905351200*x*log(x)^13+7429312800*x^2*log(x)^11-4696692000*x^3*log(x)^9+1565564000*x^4*log(x)^7-263
014752*x^5*log(x)^5+19059040*x^6*log(x)^3-388960*x^7*log(x))*exp(exp(x)-3)^19+(2203961430*log(x)^16-8014405200
*x*log(x)^14+11763078600*x^2*log(x)^12-8923714800*x^3*log(x)^10+3718214500*x^4*log(x)^8-832880048*x^5*log(x)^6
+90530440*x^6*log(x)^4-3695120*x^7*log(x)^2+24310*x^8)*exp(exp(x)-3)^18+(2333606220*log(x)^17-9617286240*x*log
(x)^15+16287339600*x^2*log(x)^13-14602442400*x^3*log(x)^11+7436429000*x^4*log(x)^9-2141691552*x^5*log(x)^7+325
909584*x^6*log(x)^5-22170720*x^7*log(x)^3+437580*x^8*log(x))*exp(exp(x)-3)^17),x, algorithm="fricas")

[Out]

2*x/(log(x)^32 - 16*x*log(x)^30 + 120*x^2*log(x)^28 - 560*x^3*log(x)^26 + 1820*x^4*log(x)^24 - 4368*x^5*log(x)
^22 + 8008*x^6*log(x)^20 - 11440*x^7*log(x)^18 + 12870*x^8*log(x)^16 - 11440*x^9*log(x)^14 + 8008*x^10*log(x)^
12 - 4368*x^11*log(x)^10 + 1820*x^12*log(x)^8 - 560*x^13*log(x)^6 + 120*x^14*log(x)^4 - 16*x^15*log(x)^2 + x^1
6 + 16*(31*log(x)^2 - x)*e^(30*e^x - 90) + 160*(31*log(x)^3 - 3*x*log(x))*e^(29*e^x - 87) + 40*(899*log(x)^4 -
 174*x*log(x)^2 + 3*x^2)*e^(28*e^x - 84) + 224*(899*log(x)^5 - 290*x*log(x)^3 + 15*x^2*log(x))*e^(27*e^x - 81)
 + 112*(8091*log(x)^6 - 3915*x*log(x)^4 + 405*x^2*log(x)^2 - 5*x^3)*e^(26*e^x - 78) + 416*(8091*log(x)^7 - 548
1*x*log(x)^5 + 945*x^2*log(x)^3 - 35*x^3*log(x))*e^(25*e^x - 75) + 260*(40455*log(x)^8 - 36540*x*log(x)^6 + 94
50*x^2*log(x)^4 - 700*x^3*log(x)^2 + 7*x^4)*e^(24*e^x - 72) + 2080*(13485*log(x)^9 - 15660*x*log(x)^7 + 5670*x
^2*log(x)^5 - 700*x^3*log(x)^3 + 21*x^4*log(x))*e^(23*e^x - 69) + 208*(310155*log(x)^10 - 450225*x*log(x)^8 +
217350*x^2*log(x)^6 - 40250*x^3*log(x)^4 + 2415*x^4*log(x)^2 - 21*x^5)*e^(22*e^x - 66) + 416*(310155*log(x)^11
 - 550275*x*log(x)^9 + 341550*x^2*log(x)^7 - 88550*x^3*log(x)^5 + 8855*x^4*log(x)^3 - 231*x^5*log(x))*e^(21*e^
x - 63) + 728*(310155*log(x)^12 - 660330*x*log(x)^10 + 512325*x^2*log(x)^8 - 177100*x^3*log(x)^6 + 26565*x^4*l
og(x)^4 - 1386*x^5*log(x)^2 + 11*x^6)*e^(20*e^x - 60) + 1120*(310155*log(x)^13 - 780390*x*log(x)^11 + 740025*x
^2*log(x)^9 - 328900*x^3*log(x)^7 + 69069*x^4*log(x)^5 - 6006*x^5*log(x)^3 + 143*x^6*log(x))*e^(19*e^x - 57) +
 80*(5892945*log(x)^14 - 17298645*x*log(x)^12 + 19684665*x^2*log(x)^10 - 10935925*x^3*log(x)^8 + 3062059*x^4*l
og(x)^6 - 399399*x^5*log(x)^4 + 19019*x^6*log(x)^2 - 143*x^7)*e^(18*e^x - 54) + 32*(17678835*log(x)^15 - 59879
925*x*log(x)^13 + 80528175*x^2*log(x)^11 - 54679625*x^3*log(x)^9 + 19684665*x^4*log(x)^7 - 3594591*x^5*log(x)^
5 + 285285*x^6*log(x)^3 - 6435*x^7*log(x))*e^(17*e^x - 51) + 2*(300540195*log(x)^16 - 1163381400*x*log(x)^14 +
 1825305300*x^2*log(x)^12 - 1487285800*x^3*log(x)^10 + 669278610*x^4*log(x)^8 - 162954792*x^5*log(x)^6 + 19399
380*x^6*log(x)^4 - 875160*x^7*log(x)^2 + 6435*x^8)*e^(16*e^x - 48) + 32*(17678835*log(x)^17 - 77558760*x*log(x
)^15 + 140408100*x^2*log(x)^13 - 135207800*x^3*log(x)^11 + 74364290*x^4*log(x)^9 - 23279256*x^5*log(x)^7 + 387
9876*x^6*log(x)^5 - 291720*x^7*log(x)^3 + 6435*x^8*log(x))*e^(15*e^x - 45) + 80*(5892945*log(x)^18 - 29084535*
x*log(x)^16 + 60174900*x^2*log(x)^14 - 67603900*x^3*log(x)^12 + 44618574*x^4*log(x)^10 - 17459442*x^5*log(x)^8
 + 3879876*x^6*log(x)^6 - 437580*x^7*log(x)^4 + 19305*x^8*log(x)^2 - 143*x^9)*e^(14*e^x - 42) + 1120*(310155*l
og(x)^19 - 1710855*x*log(x)^17 + 4011660*x^2*log(x)^15 - 5200300*x^3*log(x)^13 + 4056234*x^4*log(x)^11 - 19399
38*x^5*log(x)^9 + 554268*x^6*log(x)^7 - 87516*x^7*log(x)^5 + 6435*x^8*log(x)^3 - 143*x^9*log(x))*e^(13*e^x - 3
9) + 728*(310155*log(x)^20 - 1900950*x*log(x)^18 + 5014575*x^2*log(x)^16 - 7429000*x^3*log(x)^14 + 6760390*x^4
*log(x)^12 - 3879876*x^5*log(x)^10 + 1385670*x^6*log(x)^8 - 291720*x^7*log(x)^6 + 32175*x^8*log(x)^4 - 1430*x^
9*log(x)^2 + 11*x^10)*e^(12*e^x - 36) + 416*(310155*log(x)^21 - 2101050*x*log(x)^19 + 6194475*x^2*log(x)^17 -
10400600*x^3*log(x)^15 + 10920630*x^4*log(x)^13 - 7407036*x^5*log(x)^11 + 3233230*x^6*log(x)^9 - 875160*x^7*lo
g(x)^7 + 135135*x^8*log(x)^5 - 10010*x^9*log(x)^3 + 231*x^10*log(x))*e^(11*e^x - 33) + 208*(310155*log(x)^22 -
 2311155*x*log(x)^20 + 7571025*x^2*log(x)^18 - 14300825*x^3*log(x)^16 + 17160990*x^4*log(x)^14 - 13579566*x^5*
log(x)^12 + 7113106*x^6*log(x)^10 - 2406690*x^7*log(x)^8 + 495495*x^8*log(x)^6 - 55055*x^9*log(x)^4 + 2541*x^1
0*log(x)^2 - 21*x^11)*e^(10*e^x - 30) + 2080*(13485*log(x)^23 - 110055*x*log(x)^21 + 398475*x^2*log(x)^19 - 84
1225*x^3*log(x)^17 + 1144066*x^4*log(x)^15 - 1044582*x^5*log(x)^13 + 646646*x^6*log(x)^11 - 267410*x^7*log(x)^
9 + 70785*x^8*log(x)^7 - 11011*x^9*log(x)^5 + 847*x^10*log(x)^3 - 21*x^11*log(x))*e^(9*e^x - 27) + 260*(40455*
log(x)^24 - 360180*x*log(x)^22 + 1434510*x^2*log(x)^20 - 3364900*x^3*log(x)^18 + 5148297*x^4*log(x)^16 - 53721
36*x^5*log(x)^14 + 3879876*x^6*log(x)^12 - 1925352*x^7*log(x)^10 + 637065*x^8*log(x)^8 - 132132*x^9*log(x)^6 +
 15246*x^10*log(x)^4 - 756*x^11*log(x)^2 + 7*x^12)*e^(8*e^x - 24) + 416*(8091*log(x)^25 - 78300*x*log(x)^23 +
341550*x^2*log(x)^21 - 885500*x^3*log(x)^19 + 1514205*x^4*log(x)^17 - 1790712*x^5*log(x)^15 + 1492260*x^6*log(
x)^13 - 875160*x^7*log(x)^11 + 353925*x^8*log(x)^9 - 94380*x^9*log(x)^7 + 15246*x^10*log(x)^5 - 1260*x^11*log(
x)^3 + 35*x^12*log(x))*e^(7*e^x - 21) + 112*(8091*log(x)^26 - 84825*x*log(x)^24 + 403650*x^2*log(x)^22 - 11511
50*x^3*log(x)^20 + 2187185*x^4*log(x)^18 - 2909907*x^5*log(x)^16 + 2771340*x^6*log(x)^14 - 1896180*x^7*log(x)^
12 + 920205*x^8*log(x)^10 - 306735*x^9*log(x)^8 + 66066*x^10*log(x)^6 - 8190*x^11*log(x)^4 + 455*x^12*log(x)^2
 - 5*x^13)*e^(6*e^x - 18) + 224*(899*log(x)^27 - 10179*x*log(x)^25 + 52650*x^2*log(x)^23 - 164450*x^3*log(x)^2
1 + 345345*x^4*log(x)^19 - 513513*x^5*log(x)^17 + 554268*x^6*log(x)^15 - 437580*x^7*log(x)^13 + 250965*x^8*log
(x)^11 - 102245*x^9*log(x)^9 + 28314*x^10*log(x)^7 - 4914*x^11*log(x)^5 + 455*x^12*log(x)^3 - 15*x^13*log(x))*
e^(5*e^x - 15) + 40*(899*log(x)^28 - 10962*x*log(x)^26 + 61425*x^2*log(x)^24 - 209300*x^3*log(x)^22 + 483483*x
^4*log(x)^20 - 798798*x^5*log(x)^18 + 969969*x^6*log(x)^16 - 875160*x^7*log(x)^14 + 585585*x^8*log(x)^12 - 286
286*x^9*log(x)^10 + 99099*x^10*log(x)^8 - 22932*x^11*log(x)^6 + 3185*x^12*log(x)^4 - 210*x^13*log(x)^2 + 3*x^1
4)*e^(4*e^x - 12) + 160*(31*log(x)^29 - 406*x*log(x)^27 + 2457*x^2*log(x)^25 - 9100*x^3*log(x)^23 + 23023*x^4*
log(x)^21 - 42042*x^5*log(x)^19 + 57057*x^6*log(x)^17 - 58344*x^7*log(x)^15 + 45045*x^8*log(x)^13 - 26026*x^9*
log(x)^11 + 11011*x^10*log(x)^9 - 3276*x^11*log(x)^7 + 637*x^12*log(x)^5 - 70*x^13*log(x)^3 + 3*x^14*log(x))*e
^(3*e^x - 9) + 16*(31*log(x)^30 - 435*x*log(x)^28 + 2835*x^2*log(x)^26 - 11375*x^3*log(x)^24 + 31395*x^4*log(x
)^22 - 63063*x^5*log(x)^20 + 95095*x^6*log(x)^18 - 109395*x^7*log(x)^16 + 96525*x^8*log(x)^14 - 65065*x^9*log(
x)^12 + 33033*x^10*log(x)^10 - 12285*x^11*log(x)^8 + 3185*x^12*log(x)^6 - 525*x^13*log(x)^4 + 45*x^14*log(x)^2
 - x^15)*e^(2*e^x - 6) + 32*(log(x)^31 - 15*x*log(x)^29 + 105*x^2*log(x)^27 - 455*x^3*log(x)^25 + 1365*x^4*log
(x)^23 - 3003*x^5*log(x)^21 + 5005*x^6*log(x)^19 - 6435*x^7*log(x)^17 + 6435*x^8*log(x)^15 - 5005*x^9*log(x)^1
3 + 3003*x^10*log(x)^11 - 1365*x^11*log(x)^9 + 455*x^12*log(x)^7 - 105*x^13*log(x)^5 + 15*x^14*log(x)^3 - x^15
*log(x))*e^(e^x - 3) + 32*e^(31*e^x - 93)*log(x) + e^(32*e^x - 96))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-64*exp(x)*x+2)*exp(exp(x)-3)^2+((-64*exp(x)*x+4)*log(x)-64)*exp(exp(x)-3)+2*log(x)^2-64*log(x)+30
*x)/(-17*x*log(x)^32+136*x^2*log(x)^30-680*x^3*log(x)^28+2380*x^4*log(x)^26-6188*x^5*log(x)^24+12376*x^6*log(x
)^22-19448*x^7*log(x)^20+24310*x^8*log(x)^18-24310*x^9*log(x)^16+19448*x^10*log(x)^14-12376*x^11*log(x)^12+618
8*x^12*log(x)^10-2380*x^13*log(x)^8+680*x^14*log(x)^6-136*x^15*log(x)^4+17*x^16*log(x)^2+34*log(x)*exp(exp(x)-
3)^33-x^17+log(x)^34+exp(exp(x)-3)^34+(2203961430*log(x)^18-10218366630*x*log(x)^16+19777483800*x^2*log(x)^14-
20686793400*x^3*log(x)^12+12641929300*x^4*log(x)^10-4551094548*x^5*log(x)^8+923410488*x^6*log(x)^6-94225560*x^
7*log(x)^4+3719430*x^8*log(x)^2-24310*x^9)*exp(exp(x)-3)^16+(1855967520*log(x)^19-9617286240*x*log(x)^17+21095
982720*x^2*log(x)^15-25460668800*x^3*log(x)^13+18388260800*x^4*log(x)^11-8090834752*x^5*log(x)^9+2110652544*x^
6*log(x)^7-301521792*x^7*log(x)^5+19836960*x^8*log(x)^3-388960*x^9*log(x))*exp(exp(x)-3)^15+(1391975640*log(x)
^20-8014405200*x*log(x)^18+19777483800*x^2*log(x)^16-27279288000*x^3*log(x)^14+22985326000*x^4*log(x)^12-12136
252128*x^5*log(x)^10+3957473520*x^6*log(x)^8-753804480*x^7*log(x)^6+74388600*x^8*log(x)^4-2917200*x^9*log(x)^2
+19448*x^10)*exp(exp(x)-3)^14+(927983760*log(x)^21-5905351200*x*log(x)^19+16287339600*x^2*log(x)^17-2546066880
0*x^3*log(x)^15+24753428000*x^4*log(x)^13-15446139072*x^5*log(x)^11+6156069920*x^6*log(x)^9-1507608960*x^7*log
(x)^7+208288080*x^8*log(x)^5-13613600*x^9*log(x)^3+272272*x^10*log(x))*exp(exp(x)-3)^13+(548354040*log(x)^22-3
838478280*x*log(x)^20+11763078600*x^2*log(x)^18-20686793400*x^3*log(x)^16+22985326000*x^4*log(x)^14-1673331732
8*x^5*log(x)^12+8002890896*x^6*log(x)^10-2449864560*x^7*log(x)^8+451290840*x^8*log(x)^6-44244200*x^9*log(x)^4+
1769768*x^10*log(x)^2-12376*x^11)*exp(exp(x)-3)^12+(286097760*log(x)^23-2193416160*x*log(x)^21+7429312800*x^2*
log(x)^19-14602442400*x^3*log(x)^17+18388260800*x^4*log(x)^15-15446139072*x^5*log(x)^13+8730426432*x^6*log(x)^
11-3266486080*x^7*log(x)^9+773641440*x^8*log(x)^7-106186080*x^9*log(x)^5+7079072*x^10*log(x)^3-148512*x^11*log
(x))*exp(exp(x)-3)^11+(131128140*log(x)^24-1096708080*x*log(x)^22+4086122040*x^2*log(x)^20-8923714800*x^3*log(
x)^18+12641929300*x^4*log(x)^16-12136252128*x^5*log(x)^14+8002890896*x^6*log(x)^12-3593134688*x^7*log(x)^10+10
63756980*x^8*log(x)^8-194674480*x^9*log(x)^6+19467448*x^10*log(x)^4-816816*x^11*log(x)^2+6188*x^12)*exp(exp(x)
-3)^10+(52451256*log(x)^25-476829600*x*log(x)^23+1945772400*x^2*log(x)^21-4696692000*x^3*log(x)^19+7436429000*
x^4*log(x)^17-8090834752*x^5*log(x)^15+6156069920*x^6*log(x)^13-3266486080*x^7*log(x)^11+1181952200*x^8*log(x)
^9-278106400*x^9*log(x)^7+38934896*x^10*log(x)^5-2722720*x^11*log(x)^3+61880*x^12*log(x))*exp(exp(x)-3)^9+(181
56204*log(x)^26-178811100*x*log(x)^24+795997800*x^2*log(x)^22-2113511400*x^3*log(x)^20+3718214500*x^4*log(x)^1
8-4551094548*x^5*log(x)^16+3957473520*x^6*log(x)^14-2449864560*x^7*log(x)^12+1063756980*x^8*log(x)^10-31286970
0*x^9*log(x)^8+58402344*x^10*log(x)^6-6126120*x^11*log(x)^4+278460*x^12*log(x)^2-2380*x^13)*exp(exp(x)-3)^8+(5
379616*log(x)^27-57219552*x*log(x)^25+276868800*x^2*log(x)^23-805147200*x^3*log(x)^21+1565564000*x^4*log(x)^19
-2141691552*x^5*log(x)^17+2110652544*x^6*log(x)^15-1507608960*x^7*log(x)^13+773641440*x^8*log(x)^11-278106400*
x^9*log(x)^9+66745536*x^10*log(x)^7-9801792*x^11*log(x)^5+742560*x^12*log(x)^3-19040*x^13*log(x))*exp(exp(x)-3
)^7+(1344904*log(x)^28-15405264*x*log(x)^26+80753400*x^2*log(x)^24-256183200*x^3*log(x)^22+547947400*x^4*log(x
)^20-832880048*x^5*log(x)^18+923410488*x^6*log(x)^16-753804480*x^7*log(x)^14+451290840*x^8*log(x)^12-194674480
*x^9*log(x)^10+58402344*x^10*log(x)^8-11435424*x^11*log(x)^6+1299480*x^12*log(x)^4-66640*x^13*log(x)^2+680*x^1
4)*exp(exp(x)-3)^6+(278256*log(x)^29-3423392*x*log(x)^27+19380816*x^2*log(x)^25-66830400*x^3*log(x)^23+1565564
00*x^4*log(x)^21-263014752*x^5*log(x)^19+325909584*x^6*log(x)^17-301521792*x^7*log(x)^15+208288080*x^8*log(x)^
13-106186080*x^9*log(x)^11+38934896*x^10*log(x)^9-9801792*x^11*log(x)^7+1559376*x^12*log(x)^5-133280*x^13*log(
x)^3+4080*x^14*log(x))*exp(exp(x)-3)^5+(46376*log(x)^30-611320*x*log(x)^28+3727080*x^2*log(x)^26-13923000*x^3*
log(x)^24+35581000*x^4*log(x)^22-65753688*x^5*log(x)^20+90530440*x^6*log(x)^18-94225560*x^7*log(x)^16+74388600
*x^8*log(x)^14-44244200*x^9*log(x)^12+19467448*x^10*log(x)^10-6126120*x^11*log(x)^8+1299480*x^12*log(x)^6-1666
00*x^13*log(x)^4+10200*x^14*log(x)^2-136*x^15)*exp(exp(x)-3)^4+(5984*log(x)^31-84320*x*log(x)^29+552160*x^2*lo
g(x)^27-2227680*x^3*log(x)^25+6188000*x^4*log(x)^23-12524512*x^5*log(x)^21+19059040*x^6*log(x)^19-22170720*x^7
*log(x)^17+19836960*x^8*log(x)^15-13613600*x^9*log(x)^13+7079072*x^10*log(x)^11-2722720*x^11*log(x)^9+742560*x
^12*log(x)^7-133280*x^13*log(x)^5+13600*x^14*log(x)^3-544*x^15*log(x))*exp(exp(x)-3)^3+(561*log(x)^32-8432*x*l
og(x)^30+59160*x^2*log(x)^28-257040*x^3*log(x)^26+773500*x^4*log(x)^24-1707888*x^5*log(x)^22+2858856*x^6*log(x
)^20-3695120*x^7*log(x)^18+3719430*x^8*log(x)^16-2917200*x^9*log(x)^14+1769768*x^10*log(x)^12-816816*x^11*log(
x)^10+278460*x^12*log(x)^8-66640*x^13*log(x)^6+10200*x^14*log(x)^4-816*x^15*log(x)^2+17*x^16)*exp(exp(x)-3)^2+
(34*log(x)^33-544*x*log(x)^31+4080*x^2*log(x)^29-19040*x^3*log(x)^27+61880*x^4*log(x)^25-148512*x^5*log(x)^23+
272272*x^6*log(x)^21-388960*x^7*log(x)^19+437580*x^8*log(x)^17-388960*x^9*log(x)^15+272272*x^10*log(x)^13-1485
12*x^11*log(x)^11+61880*x^12*log(x)^9-19040*x^13*log(x)^7+4080*x^14*log(x)^5-544*x^15*log(x)^3+34*x^16*log(x))
*exp(exp(x)-3)+(561*log(x)^2-17*x)*exp(exp(x)-3)^32+(5984*log(x)^3-544*x*log(x))*exp(exp(x)-3)^31+(46376*log(x
)^4-8432*x*log(x)^2+136*x^2)*exp(exp(x)-3)^30+(278256*log(x)^5-84320*x*log(x)^3+4080*x^2*log(x))*exp(exp(x)-3)
^29+(1344904*log(x)^6-611320*x*log(x)^4+59160*x^2*log(x)^2-680*x^3)*exp(exp(x)-3)^28+(5379616*log(x)^7-3423392
*x*log(x)^5+552160*x^2*log(x)^3-19040*x^3*log(x))*exp(exp(x)-3)^27+(18156204*log(x)^8-15405264*x*log(x)^6+3727
080*x^2*log(x)^4-257040*x^3*log(x)^2+2380*x^4)*exp(exp(x)-3)^26+(52451256*log(x)^9-57219552*x*log(x)^7+1938081
6*x^2*log(x)^5-2227680*x^3*log(x)^3+61880*x^4*log(x))*exp(exp(x)-3)^25+(131128140*log(x)^10-178811100*x*log(x)
^8+80753400*x^2*log(x)^6-13923000*x^3*log(x)^4+773500*x^4*log(x)^2-6188*x^5)*exp(exp(x)-3)^24+(286097760*log(x
)^11-476829600*x*log(x)^9+276868800*x^2*log(x)^7-66830400*x^3*log(x)^5+6188000*x^4*log(x)^3-148512*x^5*log(x))
*exp(exp(x)-3)^23+(548354040*log(x)^12-1096708080*x*log(x)^10+795997800*x^2*log(x)^8-256183200*x^3*log(x)^6+35
581000*x^4*log(x)^4-1707888*x^5*log(x)^2+12376*x^6)*exp(exp(x)-3)^22+(927983760*log(x)^13-2193416160*x*log(x)^
11+1945772400*x^2*log(x)^9-805147200*x^3*log(x)^7+156556400*x^4*log(x)^5-12524512*x^5*log(x)^3+272272*x^6*log(
x))*exp(exp(x)-3)^21+(1391975640*log(x)^14-3838478280*x*log(x)^12+4086122040*x^2*log(x)^10-2113511400*x^3*log(
x)^8+547947400*x^4*log(x)^6-65753688*x^5*log(x)^4+2858856*x^6*log(x)^2-19448*x^7)*exp(exp(x)-3)^20+(1855967520
*log(x)^15-5905351200*x*log(x)^13+7429312800*x^2*log(x)^11-4696692000*x^3*log(x)^9+1565564000*x^4*log(x)^7-263
014752*x^5*log(x)^5+19059040*x^6*log(x)^3-388960*x^7*log(x))*exp(exp(x)-3)^19+(2203961430*log(x)^16-8014405200
*x*log(x)^14+11763078600*x^2*log(x)^12-8923714800*x^3*log(x)^10+3718214500*x^4*log(x)^8-832880048*x^5*log(x)^6
+90530440*x^6*log(x)^4-3695120*x^7*log(x)^2+24310*x^8)*exp(exp(x)-3)^18+(2333606220*log(x)^17-9617286240*x*log
(x)^15+16287339600*x^2*log(x)^13-14602442400*x^3*log(x)^11+7436429000*x^4*log(x)^9-2141691552*x^5*log(x)^7+325
909584*x^6*log(x)^5-22170720*x^7*log(x)^3+437580*x^8*log(x))*exp(exp(x)-3)^17),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 45.68, size = 32, normalized size = 1.52




method result size



risch \(\frac {2 x}{\left (-\ln \relax (x )^{2}-2 \ln \relax (x ) {\mathrm e}^{{\mathrm e}^{x}-3}-{\mathrm e}^{2 \,{\mathrm e}^{x}-6}+x \right )^{16}}\) \(32\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-64*exp(x)*x+2)*exp(exp(x)-3)^2+((-64*exp(x)*x+4)*ln(x)-64)*exp(exp(x)-3)+2*ln(x)^2-64*ln(x)+30*x)/(-17*
x*ln(x)^32+136*x^2*ln(x)^30-680*x^3*ln(x)^28+2380*x^4*ln(x)^26-6188*x^5*ln(x)^24+12376*x^6*ln(x)^22-19448*x^7*
ln(x)^20+24310*x^8*ln(x)^18-24310*x^9*ln(x)^16+19448*x^10*ln(x)^14-12376*x^11*ln(x)^12+6188*x^12*ln(x)^10-2380
*x^13*ln(x)^8+680*x^14*ln(x)^6-136*x^15*ln(x)^4+17*x^16*ln(x)^2+34*ln(x)*exp(exp(x)-3)^33-x^17+(278256*ln(x)^5
-84320*x*ln(x)^3+4080*x^2*ln(x))*exp(exp(x)-3)^29+(1344904*ln(x)^6-611320*x*ln(x)^4+59160*x^2*ln(x)^2-680*x^3)
*exp(exp(x)-3)^28+(5379616*ln(x)^7-3423392*x*ln(x)^5+552160*x^2*ln(x)^3-19040*x^3*ln(x))*exp(exp(x)-3)^27+(181
56204*ln(x)^8-15405264*x*ln(x)^6+3727080*x^2*ln(x)^4-257040*x^3*ln(x)^2+2380*x^4)*exp(exp(x)-3)^26+(52451256*l
n(x)^9-57219552*x*ln(x)^7+19380816*x^2*ln(x)^5-2227680*x^3*ln(x)^3+61880*x^4*ln(x))*exp(exp(x)-3)^25+(13112814
0*ln(x)^10-178811100*x*ln(x)^8+80753400*x^2*ln(x)^6-13923000*x^3*ln(x)^4+773500*x^4*ln(x)^2-6188*x^5)*exp(exp(
x)-3)^24+(286097760*ln(x)^11-476829600*x*ln(x)^9+276868800*x^2*ln(x)^7-66830400*x^3*ln(x)^5+6188000*x^4*ln(x)^
3-148512*x^5*ln(x))*exp(exp(x)-3)^23+(548354040*ln(x)^12-1096708080*x*ln(x)^10+795997800*x^2*ln(x)^8-256183200
*x^3*ln(x)^6+35581000*x^4*ln(x)^4-1707888*x^5*ln(x)^2+12376*x^6)*exp(exp(x)-3)^22+(927983760*ln(x)^13-21934161
60*x*ln(x)^11+1945772400*x^2*ln(x)^9-805147200*x^3*ln(x)^7+156556400*x^4*ln(x)^5-12524512*x^5*ln(x)^3+272272*x
^6*ln(x))*exp(exp(x)-3)^21+(1391975640*ln(x)^14-3838478280*x*ln(x)^12+4086122040*x^2*ln(x)^10-2113511400*x^3*l
n(x)^8+547947400*x^4*ln(x)^6-65753688*x^5*ln(x)^4+2858856*x^6*ln(x)^2-19448*x^7)*exp(exp(x)-3)^20+(1855967520*
ln(x)^15-5905351200*x*ln(x)^13+7429312800*x^2*ln(x)^11-4696692000*x^3*ln(x)^9+1565564000*x^4*ln(x)^7-263014752
*x^5*ln(x)^5+19059040*x^6*ln(x)^3-388960*x^7*ln(x))*exp(exp(x)-3)^19+(2203961430*ln(x)^16-8014405200*x*ln(x)^1
4+11763078600*x^2*ln(x)^12-8923714800*x^3*ln(x)^10+3718214500*x^4*ln(x)^8-832880048*x^5*ln(x)^6+90530440*x^6*l
n(x)^4-3695120*x^7*ln(x)^2+24310*x^8)*exp(exp(x)-3)^18+(2333606220*ln(x)^17-9617286240*x*ln(x)^15+16287339600*
x^2*ln(x)^13-14602442400*x^3*ln(x)^11+7436429000*x^4*ln(x)^9-2141691552*x^5*ln(x)^7+325909584*x^6*ln(x)^5-2217
0720*x^7*ln(x)^3+437580*x^8*ln(x))*exp(exp(x)-3)^17+(2203961430*ln(x)^18-10218366630*x*ln(x)^16+19777483800*x^
2*ln(x)^14-20686793400*x^3*ln(x)^12+12641929300*x^4*ln(x)^10-4551094548*x^5*ln(x)^8+923410488*x^6*ln(x)^6-9422
5560*x^7*ln(x)^4+3719430*x^8*ln(x)^2-24310*x^9)*exp(exp(x)-3)^16+(1855967520*ln(x)^19-9617286240*x*ln(x)^17+21
095982720*x^2*ln(x)^15-25460668800*x^3*ln(x)^13+18388260800*x^4*ln(x)^11-8090834752*x^5*ln(x)^9+2110652544*x^6
*ln(x)^7-301521792*x^7*ln(x)^5+19836960*x^8*ln(x)^3-388960*x^9*ln(x))*exp(exp(x)-3)^15+(1391975640*ln(x)^20-80
14405200*x*ln(x)^18+19777483800*x^2*ln(x)^16-27279288000*x^3*ln(x)^14+22985326000*x^4*ln(x)^12-12136252128*x^5
*ln(x)^10+3957473520*x^6*ln(x)^8-753804480*x^7*ln(x)^6+74388600*x^8*ln(x)^4-2917200*x^9*ln(x)^2+19448*x^10)*ex
p(exp(x)-3)^14+(927983760*ln(x)^21-5905351200*x*ln(x)^19+16287339600*x^2*ln(x)^17-25460668800*x^3*ln(x)^15+247
53428000*x^4*ln(x)^13-15446139072*x^5*ln(x)^11+6156069920*x^6*ln(x)^9-1507608960*x^7*ln(x)^7+208288080*x^8*ln(
x)^5-13613600*x^9*ln(x)^3+272272*x^10*ln(x))*exp(exp(x)-3)^13+(548354040*ln(x)^22-3838478280*x*ln(x)^20+117630
78600*x^2*ln(x)^18-20686793400*x^3*ln(x)^16+22985326000*x^4*ln(x)^14-16733317328*x^5*ln(x)^12+8002890896*x^6*l
n(x)^10-2449864560*x^7*ln(x)^8+451290840*x^8*ln(x)^6-44244200*x^9*ln(x)^4+1769768*x^10*ln(x)^2-12376*x^11)*exp
(exp(x)-3)^12+(286097760*ln(x)^23-2193416160*x*ln(x)^21+7429312800*x^2*ln(x)^19-14602442400*x^3*ln(x)^17+18388
260800*x^4*ln(x)^15-15446139072*x^5*ln(x)^13+8730426432*x^6*ln(x)^11-3266486080*x^7*ln(x)^9+773641440*x^8*ln(x
)^7-106186080*x^9*ln(x)^5+7079072*x^10*ln(x)^3-148512*x^11*ln(x))*exp(exp(x)-3)^11+(131128140*ln(x)^24-1096708
080*x*ln(x)^22+4086122040*x^2*ln(x)^20-8923714800*x^3*ln(x)^18+12641929300*x^4*ln(x)^16-12136252128*x^5*ln(x)^
14+8002890896*x^6*ln(x)^12-3593134688*x^7*ln(x)^10+1063756980*x^8*ln(x)^8-194674480*x^9*ln(x)^6+19467448*x^10*
ln(x)^4-816816*x^11*ln(x)^2+6188*x^12)*exp(exp(x)-3)^10+(52451256*ln(x)^25-476829600*x*ln(x)^23+1945772400*x^2
*ln(x)^21-4696692000*x^3*ln(x)^19+7436429000*x^4*ln(x)^17-8090834752*x^5*ln(x)^15+6156069920*x^6*ln(x)^13-3266
486080*x^7*ln(x)^11+1181952200*x^8*ln(x)^9-278106400*x^9*ln(x)^7+38934896*x^10*ln(x)^5-2722720*x^11*ln(x)^3+61
880*x^12*ln(x))*exp(exp(x)-3)^9+(18156204*ln(x)^26-178811100*x*ln(x)^24+795997800*x^2*ln(x)^22-2113511400*x^3*
ln(x)^20+3718214500*x^4*ln(x)^18-4551094548*x^5*ln(x)^16+3957473520*x^6*ln(x)^14-2449864560*x^7*ln(x)^12+10637
56980*x^8*ln(x)^10-312869700*x^9*ln(x)^8+58402344*x^10*ln(x)^6-6126120*x^11*ln(x)^4+278460*x^12*ln(x)^2-2380*x
^13)*exp(exp(x)-3)^8+(5379616*ln(x)^27-57219552*x*ln(x)^25+276868800*x^2*ln(x)^23-805147200*x^3*ln(x)^21+15655
64000*x^4*ln(x)^19-2141691552*x^5*ln(x)^17+2110652544*x^6*ln(x)^15-1507608960*x^7*ln(x)^13+773641440*x^8*ln(x)
^11-278106400*x^9*ln(x)^9+66745536*x^10*ln(x)^7-9801792*x^11*ln(x)^5+742560*x^12*ln(x)^3-19040*x^13*ln(x))*exp
(exp(x)-3)^7+(1344904*ln(x)^28-15405264*x*ln(x)^26+80753400*x^2*ln(x)^24-256183200*x^3*ln(x)^22+547947400*x^4*
ln(x)^20-832880048*x^5*ln(x)^18+923410488*x^6*ln(x)^16-753804480*x^7*ln(x)^14+451290840*x^8*ln(x)^12-194674480
*x^9*ln(x)^10+58402344*x^10*ln(x)^8-11435424*x^11*ln(x)^6+1299480*x^12*ln(x)^4-66640*x^13*ln(x)^2+680*x^14)*ex
p(exp(x)-3)^6+(278256*ln(x)^29-3423392*x*ln(x)^27+19380816*x^2*ln(x)^25-66830400*x^3*ln(x)^23+156556400*x^4*ln
(x)^21-263014752*x^5*ln(x)^19+325909584*x^6*ln(x)^17-301521792*x^7*ln(x)^15+208288080*x^8*ln(x)^13-106186080*x
^9*ln(x)^11+38934896*x^10*ln(x)^9-9801792*x^11*ln(x)^7+1559376*x^12*ln(x)^5-133280*x^13*ln(x)^3+4080*x^14*ln(x
))*exp(exp(x)-3)^5+(46376*ln(x)^30-611320*x*ln(x)^28+3727080*x^2*ln(x)^26-13923000*x^3*ln(x)^24+35581000*x^4*l
n(x)^22-65753688*x^5*ln(x)^20+90530440*x^6*ln(x)^18-94225560*x^7*ln(x)^16+74388600*x^8*ln(x)^14-44244200*x^9*l
n(x)^12+19467448*x^10*ln(x)^10-6126120*x^11*ln(x)^8+1299480*x^12*ln(x)^6-166600*x^13*ln(x)^4+10200*x^14*ln(x)^
2-136*x^15)*exp(exp(x)-3)^4+(5984*ln(x)^31-84320*x*ln(x)^29+552160*x^2*ln(x)^27-2227680*x^3*ln(x)^25+6188000*x
^4*ln(x)^23-12524512*x^5*ln(x)^21+19059040*x^6*ln(x)^19-22170720*x^7*ln(x)^17+19836960*x^8*ln(x)^15-13613600*x
^9*ln(x)^13+7079072*x^10*ln(x)^11-2722720*x^11*ln(x)^9+742560*x^12*ln(x)^7-133280*x^13*ln(x)^5+13600*x^14*ln(x
)^3-544*x^15*ln(x))*exp(exp(x)-3)^3+(561*ln(x)^32-8432*x*ln(x)^30+59160*x^2*ln(x)^28-257040*x^3*ln(x)^26+77350
0*x^4*ln(x)^24-1707888*x^5*ln(x)^22+2858856*x^6*ln(x)^20-3695120*x^7*ln(x)^18+3719430*x^8*ln(x)^16-2917200*x^9
*ln(x)^14+1769768*x^10*ln(x)^12-816816*x^11*ln(x)^10+278460*x^12*ln(x)^8-66640*x^13*ln(x)^6+10200*x^14*ln(x)^4
-816*x^15*ln(x)^2+17*x^16)*exp(exp(x)-3)^2+(34*ln(x)^33-544*x*ln(x)^31+4080*x^2*ln(x)^29-19040*x^3*ln(x)^27+61
880*x^4*ln(x)^25-148512*x^5*ln(x)^23+272272*x^6*ln(x)^21-388960*x^7*ln(x)^19+437580*x^8*ln(x)^17-388960*x^9*ln
(x)^15+272272*x^10*ln(x)^13-148512*x^11*ln(x)^11+61880*x^12*ln(x)^9-19040*x^13*ln(x)^7+4080*x^14*ln(x)^5-544*x
^15*ln(x)^3+34*x^16*ln(x))*exp(exp(x)-3)+(561*ln(x)^2-17*x)*exp(exp(x)-3)^32+(5984*ln(x)^3-544*x*ln(x))*exp(ex
p(x)-3)^31+(46376*ln(x)^4-8432*x*ln(x)^2+136*x^2)*exp(exp(x)-3)^30+ln(x)^34+exp(exp(x)-3)^34),x,method=_RETURN
VERBOSE)

[Out]

2*x/(-ln(x)^2-2*ln(x)*exp(exp(x)-3)-exp(2*exp(x)-6)+x)^16

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-64*exp(x)*x+2)*exp(exp(x)-3)^2+((-64*exp(x)*x+4)*log(x)-64)*exp(exp(x)-3)+2*log(x)^2-64*log(x)+30
*x)/(-17*x*log(x)^32+136*x^2*log(x)^30-680*x^3*log(x)^28+2380*x^4*log(x)^26-6188*x^5*log(x)^24+12376*x^6*log(x
)^22-19448*x^7*log(x)^20+24310*x^8*log(x)^18-24310*x^9*log(x)^16+19448*x^10*log(x)^14-12376*x^11*log(x)^12+618
8*x^12*log(x)^10-2380*x^13*log(x)^8+680*x^14*log(x)^6-136*x^15*log(x)^4+17*x^16*log(x)^2+34*log(x)*exp(exp(x)-
3)^33-x^17+log(x)^34+exp(exp(x)-3)^34+(2203961430*log(x)^18-10218366630*x*log(x)^16+19777483800*x^2*log(x)^14-
20686793400*x^3*log(x)^12+12641929300*x^4*log(x)^10-4551094548*x^5*log(x)^8+923410488*x^6*log(x)^6-94225560*x^
7*log(x)^4+3719430*x^8*log(x)^2-24310*x^9)*exp(exp(x)-3)^16+(1855967520*log(x)^19-9617286240*x*log(x)^17+21095
982720*x^2*log(x)^15-25460668800*x^3*log(x)^13+18388260800*x^4*log(x)^11-8090834752*x^5*log(x)^9+2110652544*x^
6*log(x)^7-301521792*x^7*log(x)^5+19836960*x^8*log(x)^3-388960*x^9*log(x))*exp(exp(x)-3)^15+(1391975640*log(x)
^20-8014405200*x*log(x)^18+19777483800*x^2*log(x)^16-27279288000*x^3*log(x)^14+22985326000*x^4*log(x)^12-12136
252128*x^5*log(x)^10+3957473520*x^6*log(x)^8-753804480*x^7*log(x)^6+74388600*x^8*log(x)^4-2917200*x^9*log(x)^2
+19448*x^10)*exp(exp(x)-3)^14+(927983760*log(x)^21-5905351200*x*log(x)^19+16287339600*x^2*log(x)^17-2546066880
0*x^3*log(x)^15+24753428000*x^4*log(x)^13-15446139072*x^5*log(x)^11+6156069920*x^6*log(x)^9-1507608960*x^7*log
(x)^7+208288080*x^8*log(x)^5-13613600*x^9*log(x)^3+272272*x^10*log(x))*exp(exp(x)-3)^13+(548354040*log(x)^22-3
838478280*x*log(x)^20+11763078600*x^2*log(x)^18-20686793400*x^3*log(x)^16+22985326000*x^4*log(x)^14-1673331732
8*x^5*log(x)^12+8002890896*x^6*log(x)^10-2449864560*x^7*log(x)^8+451290840*x^8*log(x)^6-44244200*x^9*log(x)^4+
1769768*x^10*log(x)^2-12376*x^11)*exp(exp(x)-3)^12+(286097760*log(x)^23-2193416160*x*log(x)^21+7429312800*x^2*
log(x)^19-14602442400*x^3*log(x)^17+18388260800*x^4*log(x)^15-15446139072*x^5*log(x)^13+8730426432*x^6*log(x)^
11-3266486080*x^7*log(x)^9+773641440*x^8*log(x)^7-106186080*x^9*log(x)^5+7079072*x^10*log(x)^3-148512*x^11*log
(x))*exp(exp(x)-3)^11+(131128140*log(x)^24-1096708080*x*log(x)^22+4086122040*x^2*log(x)^20-8923714800*x^3*log(
x)^18+12641929300*x^4*log(x)^16-12136252128*x^5*log(x)^14+8002890896*x^6*log(x)^12-3593134688*x^7*log(x)^10+10
63756980*x^8*log(x)^8-194674480*x^9*log(x)^6+19467448*x^10*log(x)^4-816816*x^11*log(x)^2+6188*x^12)*exp(exp(x)
-3)^10+(52451256*log(x)^25-476829600*x*log(x)^23+1945772400*x^2*log(x)^21-4696692000*x^3*log(x)^19+7436429000*
x^4*log(x)^17-8090834752*x^5*log(x)^15+6156069920*x^6*log(x)^13-3266486080*x^7*log(x)^11+1181952200*x^8*log(x)
^9-278106400*x^9*log(x)^7+38934896*x^10*log(x)^5-2722720*x^11*log(x)^3+61880*x^12*log(x))*exp(exp(x)-3)^9+(181
56204*log(x)^26-178811100*x*log(x)^24+795997800*x^2*log(x)^22-2113511400*x^3*log(x)^20+3718214500*x^4*log(x)^1
8-4551094548*x^5*log(x)^16+3957473520*x^6*log(x)^14-2449864560*x^7*log(x)^12+1063756980*x^8*log(x)^10-31286970
0*x^9*log(x)^8+58402344*x^10*log(x)^6-6126120*x^11*log(x)^4+278460*x^12*log(x)^2-2380*x^13)*exp(exp(x)-3)^8+(5
379616*log(x)^27-57219552*x*log(x)^25+276868800*x^2*log(x)^23-805147200*x^3*log(x)^21+1565564000*x^4*log(x)^19
-2141691552*x^5*log(x)^17+2110652544*x^6*log(x)^15-1507608960*x^7*log(x)^13+773641440*x^8*log(x)^11-278106400*
x^9*log(x)^9+66745536*x^10*log(x)^7-9801792*x^11*log(x)^5+742560*x^12*log(x)^3-19040*x^13*log(x))*exp(exp(x)-3
)^7+(1344904*log(x)^28-15405264*x*log(x)^26+80753400*x^2*log(x)^24-256183200*x^3*log(x)^22+547947400*x^4*log(x
)^20-832880048*x^5*log(x)^18+923410488*x^6*log(x)^16-753804480*x^7*log(x)^14+451290840*x^8*log(x)^12-194674480
*x^9*log(x)^10+58402344*x^10*log(x)^8-11435424*x^11*log(x)^6+1299480*x^12*log(x)^4-66640*x^13*log(x)^2+680*x^1
4)*exp(exp(x)-3)^6+(278256*log(x)^29-3423392*x*log(x)^27+19380816*x^2*log(x)^25-66830400*x^3*log(x)^23+1565564
00*x^4*log(x)^21-263014752*x^5*log(x)^19+325909584*x^6*log(x)^17-301521792*x^7*log(x)^15+208288080*x^8*log(x)^
13-106186080*x^9*log(x)^11+38934896*x^10*log(x)^9-9801792*x^11*log(x)^7+1559376*x^12*log(x)^5-133280*x^13*log(
x)^3+4080*x^14*log(x))*exp(exp(x)-3)^5+(46376*log(x)^30-611320*x*log(x)^28+3727080*x^2*log(x)^26-13923000*x^3*
log(x)^24+35581000*x^4*log(x)^22-65753688*x^5*log(x)^20+90530440*x^6*log(x)^18-94225560*x^7*log(x)^16+74388600
*x^8*log(x)^14-44244200*x^9*log(x)^12+19467448*x^10*log(x)^10-6126120*x^11*log(x)^8+1299480*x^12*log(x)^6-1666
00*x^13*log(x)^4+10200*x^14*log(x)^2-136*x^15)*exp(exp(x)-3)^4+(5984*log(x)^31-84320*x*log(x)^29+552160*x^2*lo
g(x)^27-2227680*x^3*log(x)^25+6188000*x^4*log(x)^23-12524512*x^5*log(x)^21+19059040*x^6*log(x)^19-22170720*x^7
*log(x)^17+19836960*x^8*log(x)^15-13613600*x^9*log(x)^13+7079072*x^10*log(x)^11-2722720*x^11*log(x)^9+742560*x
^12*log(x)^7-133280*x^13*log(x)^5+13600*x^14*log(x)^3-544*x^15*log(x))*exp(exp(x)-3)^3+(561*log(x)^32-8432*x*l
og(x)^30+59160*x^2*log(x)^28-257040*x^3*log(x)^26+773500*x^4*log(x)^24-1707888*x^5*log(x)^22+2858856*x^6*log(x
)^20-3695120*x^7*log(x)^18+3719430*x^8*log(x)^16-2917200*x^9*log(x)^14+1769768*x^10*log(x)^12-816816*x^11*log(
x)^10+278460*x^12*log(x)^8-66640*x^13*log(x)^6+10200*x^14*log(x)^4-816*x^15*log(x)^2+17*x^16)*exp(exp(x)-3)^2+
(34*log(x)^33-544*x*log(x)^31+4080*x^2*log(x)^29-19040*x^3*log(x)^27+61880*x^4*log(x)^25-148512*x^5*log(x)^23+
272272*x^6*log(x)^21-388960*x^7*log(x)^19+437580*x^8*log(x)^17-388960*x^9*log(x)^15+272272*x^10*log(x)^13-1485
12*x^11*log(x)^11+61880*x^12*log(x)^9-19040*x^13*log(x)^7+4080*x^14*log(x)^5-544*x^15*log(x)^3+34*x^16*log(x))
*exp(exp(x)-3)+(561*log(x)^2-17*x)*exp(exp(x)-3)^32+(5984*log(x)^3-544*x*log(x))*exp(exp(x)-3)^31+(46376*log(x
)^4-8432*x*log(x)^2+136*x^2)*exp(exp(x)-3)^30+(278256*log(x)^5-84320*x*log(x)^3+4080*x^2*log(x))*exp(exp(x)-3)
^29+(1344904*log(x)^6-611320*x*log(x)^4+59160*x^2*log(x)^2-680*x^3)*exp(exp(x)-3)^28+(5379616*log(x)^7-3423392
*x*log(x)^5+552160*x^2*log(x)^3-19040*x^3*log(x))*exp(exp(x)-3)^27+(18156204*log(x)^8-15405264*x*log(x)^6+3727
080*x^2*log(x)^4-257040*x^3*log(x)^2+2380*x^4)*exp(exp(x)-3)^26+(52451256*log(x)^9-57219552*x*log(x)^7+1938081
6*x^2*log(x)^5-2227680*x^3*log(x)^3+61880*x^4*log(x))*exp(exp(x)-3)^25+(131128140*log(x)^10-178811100*x*log(x)
^8+80753400*x^2*log(x)^6-13923000*x^3*log(x)^4+773500*x^4*log(x)^2-6188*x^5)*exp(exp(x)-3)^24+(286097760*log(x
)^11-476829600*x*log(x)^9+276868800*x^2*log(x)^7-66830400*x^3*log(x)^5+6188000*x^4*log(x)^3-148512*x^5*log(x))
*exp(exp(x)-3)^23+(548354040*log(x)^12-1096708080*x*log(x)^10+795997800*x^2*log(x)^8-256183200*x^3*log(x)^6+35
581000*x^4*log(x)^4-1707888*x^5*log(x)^2+12376*x^6)*exp(exp(x)-3)^22+(927983760*log(x)^13-2193416160*x*log(x)^
11+1945772400*x^2*log(x)^9-805147200*x^3*log(x)^7+156556400*x^4*log(x)^5-12524512*x^5*log(x)^3+272272*x^6*log(
x))*exp(exp(x)-3)^21+(1391975640*log(x)^14-3838478280*x*log(x)^12+4086122040*x^2*log(x)^10-2113511400*x^3*log(
x)^8+547947400*x^4*log(x)^6-65753688*x^5*log(x)^4+2858856*x^6*log(x)^2-19448*x^7)*exp(exp(x)-3)^20+(1855967520
*log(x)^15-5905351200*x*log(x)^13+7429312800*x^2*log(x)^11-4696692000*x^3*log(x)^9+1565564000*x^4*log(x)^7-263
014752*x^5*log(x)^5+19059040*x^6*log(x)^3-388960*x^7*log(x))*exp(exp(x)-3)^19+(2203961430*log(x)^16-8014405200
*x*log(x)^14+11763078600*x^2*log(x)^12-8923714800*x^3*log(x)^10+3718214500*x^4*log(x)^8-832880048*x^5*log(x)^6
+90530440*x^6*log(x)^4-3695120*x^7*log(x)^2+24310*x^8)*exp(exp(x)-3)^18+(2333606220*log(x)^17-9617286240*x*log
(x)^15+16287339600*x^2*log(x)^13-14602442400*x^3*log(x)^11+7436429000*x^4*log(x)^9-2141691552*x^5*log(x)^7+325
909584*x^6*log(x)^5-22170720*x^7*log(x)^3+437580*x^8*log(x))*exp(exp(x)-3)^17),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F(-1)]  time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(64*log(x) - 30*x - 2*log(x)^2 + exp(2*exp(x) - 6)*(64*x*exp(x) - 2) + exp(exp(x) - 3)*(log(x)*(64*x*exp(
x) - 4) + 64))/(exp(34*exp(x) - 102) - exp(4*exp(x) - 12)*(611320*x*log(x)^28 - 46376*log(x)^30 - 10200*x^14*l
og(x)^2 + 166600*x^13*log(x)^4 - 1299480*x^12*log(x)^6 + 6126120*x^11*log(x)^8 - 19467448*x^10*log(x)^10 + 442
44200*x^9*log(x)^12 - 74388600*x^8*log(x)^14 + 94225560*x^7*log(x)^16 - 90530440*x^6*log(x)^18 + 65753688*x^5*
log(x)^20 - 35581000*x^4*log(x)^22 + 13923000*x^3*log(x)^24 - 3727080*x^2*log(x)^26 + 136*x^15) - exp(19*exp(x
) - 57)*(388960*x^7*log(x) + 5905351200*x*log(x)^13 - 1855967520*log(x)^15 - 19059040*x^6*log(x)^3 + 263014752
*x^5*log(x)^5 - 1565564000*x^4*log(x)^7 + 4696692000*x^3*log(x)^9 - 7429312800*x^2*log(x)^11) - exp(27*exp(x)
- 81)*(19040*x^3*log(x) + 3423392*x*log(x)^5 - 5379616*log(x)^7 - 552160*x^2*log(x)^3) - 17*x*log(x)^32 - exp(
7*exp(x) - 21)*(19040*x^13*log(x) + 57219552*x*log(x)^25 - 5379616*log(x)^27 - 742560*x^12*log(x)^3 + 9801792*
x^11*log(x)^5 - 66745536*x^10*log(x)^7 + 278106400*x^9*log(x)^9 - 773641440*x^8*log(x)^11 + 1507608960*x^7*log
(x)^13 - 2110652544*x^6*log(x)^15 + 2141691552*x^5*log(x)^17 - 1565564000*x^4*log(x)^19 + 805147200*x^3*log(x)
^21 - 276868800*x^2*log(x)^23) + exp(31*exp(x) - 93)*(5984*log(x)^3 - 544*x*log(x)) - exp(28*exp(x) - 84)*(611
320*x*log(x)^4 - 1344904*log(x)^6 - 59160*x^2*log(x)^2 + 680*x^3) - exp(15*exp(x) - 45)*(388960*x^9*log(x) + 9
617286240*x*log(x)^17 - 1855967520*log(x)^19 - 19836960*x^8*log(x)^3 + 301521792*x^7*log(x)^5 - 2110652544*x^6
*log(x)^7 + 8090834752*x^5*log(x)^9 - 18388260800*x^4*log(x)^11 + 25460668800*x^3*log(x)^13 - 21095982720*x^2*
log(x)^15) + exp(9*exp(x) - 27)*(61880*x^12*log(x) - 476829600*x*log(x)^23 + 52451256*log(x)^25 - 2722720*x^11
*log(x)^3 + 38934896*x^10*log(x)^5 - 278106400*x^9*log(x)^7 + 1181952200*x^8*log(x)^9 - 3266486080*x^7*log(x)^
11 + 6156069920*x^6*log(x)^13 - 8090834752*x^5*log(x)^15 + 7436429000*x^4*log(x)^17 - 4696692000*x^3*log(x)^19
 + 1945772400*x^2*log(x)^21) - exp(32*exp(x) - 96)*(17*x - 561*log(x)^2) - exp(24*exp(x) - 72)*(178811100*x*lo
g(x)^8 - 131128140*log(x)^10 - 773500*x^4*log(x)^2 + 13923000*x^3*log(x)^4 - 80753400*x^2*log(x)^6 + 6188*x^5)
 + log(x)^34 + exp(22*exp(x) - 66)*(548354040*log(x)^12 - 1096708080*x*log(x)^10 - 1707888*x^5*log(x)^2 + 3558
1000*x^4*log(x)^4 - 256183200*x^3*log(x)^6 + 795997800*x^2*log(x)^8 + 12376*x^6) + 34*exp(33*exp(x) - 99)*log(
x) - exp(23*exp(x) - 69)*(148512*x^5*log(x) + 476829600*x*log(x)^9 - 286097760*log(x)^11 - 6188000*x^4*log(x)^
3 + 66830400*x^3*log(x)^5 - 276868800*x^2*log(x)^7) - exp(12*exp(x) - 36)*(3838478280*x*log(x)^20 - 548354040*
log(x)^22 - 1769768*x^10*log(x)^2 + 44244200*x^9*log(x)^4 - 451290840*x^8*log(x)^6 + 2449864560*x^7*log(x)^8 -
 8002890896*x^6*log(x)^10 + 16733317328*x^5*log(x)^12 - 22985326000*x^4*log(x)^14 + 20686793400*x^3*log(x)^16
- 11763078600*x^2*log(x)^18 + 12376*x^11) + exp(6*exp(x) - 18)*(1344904*log(x)^28 - 15405264*x*log(x)^26 - 666
40*x^13*log(x)^2 + 1299480*x^12*log(x)^4 - 11435424*x^11*log(x)^6 + 58402344*x^10*log(x)^8 - 194674480*x^9*log
(x)^10 + 451290840*x^8*log(x)^12 - 753804480*x^7*log(x)^14 + 923410488*x^6*log(x)^16 - 832880048*x^5*log(x)^18
 + 547947400*x^4*log(x)^20 - 256183200*x^3*log(x)^22 + 80753400*x^2*log(x)^24 + 680*x^14) + exp(2*exp(x) - 6)*
(561*log(x)^32 - 8432*x*log(x)^30 - 816*x^15*log(x)^2 + 10200*x^14*log(x)^4 - 66640*x^13*log(x)^6 + 278460*x^1
2*log(x)^8 - 816816*x^11*log(x)^10 + 1769768*x^10*log(x)^12 - 2917200*x^9*log(x)^14 + 3719430*x^8*log(x)^16 -
3695120*x^7*log(x)^18 + 2858856*x^6*log(x)^20 - 1707888*x^5*log(x)^22 + 773500*x^4*log(x)^24 - 257040*x^3*log(
x)^26 + 59160*x^2*log(x)^28 + 17*x^16) - exp(8*exp(x) - 24)*(178811100*x*log(x)^24 - 18156204*log(x)^26 - 2784
60*x^12*log(x)^2 + 6126120*x^11*log(x)^4 - 58402344*x^10*log(x)^6 + 312869700*x^9*log(x)^8 - 1063756980*x^8*lo
g(x)^10 + 2449864560*x^7*log(x)^12 - 3957473520*x^6*log(x)^14 + 4551094548*x^5*log(x)^16 - 3718214500*x^4*log(
x)^18 + 2113511400*x^3*log(x)^20 - 795997800*x^2*log(x)^22 + 2380*x^13) + 17*x^16*log(x)^2 - 136*x^15*log(x)^4
 + 680*x^14*log(x)^6 - 2380*x^13*log(x)^8 + 6188*x^12*log(x)^10 - 12376*x^11*log(x)^12 + 19448*x^10*log(x)^14
- 24310*x^9*log(x)^16 + 24310*x^8*log(x)^18 - 19448*x^7*log(x)^20 + 12376*x^6*log(x)^22 - 6188*x^5*log(x)^24 +
 2380*x^4*log(x)^26 - 680*x^3*log(x)^28 + 136*x^2*log(x)^30 - exp(11*exp(x) - 33)*(148512*x^11*log(x) + 219341
6160*x*log(x)^21 - 286097760*log(x)^23 - 7079072*x^10*log(x)^3 + 106186080*x^9*log(x)^5 - 773641440*x^8*log(x)
^7 + 3266486080*x^7*log(x)^9 - 8730426432*x^6*log(x)^11 + 15446139072*x^5*log(x)^13 - 18388260800*x^4*log(x)^1
5 + 14602442400*x^3*log(x)^17 - 7429312800*x^2*log(x)^19) + exp(10*exp(x) - 30)*(131128140*log(x)^24 - 1096708
080*x*log(x)^22 - 816816*x^11*log(x)^2 + 19467448*x^10*log(x)^4 - 194674480*x^9*log(x)^6 + 1063756980*x^8*log(
x)^8 - 3593134688*x^7*log(x)^10 + 8002890896*x^6*log(x)^12 - 12136252128*x^5*log(x)^14 + 12641929300*x^4*log(x
)^16 - 8923714800*x^3*log(x)^18 + 4086122040*x^2*log(x)^20 + 6188*x^12) + exp(25*exp(x) - 75)*(61880*x^4*log(x
) - 57219552*x*log(x)^7 + 52451256*log(x)^9 - 2227680*x^3*log(x)^3 + 19380816*x^2*log(x)^5) + exp(29*exp(x) -
87)*(4080*x^2*log(x) - 84320*x*log(x)^3 + 278256*log(x)^5) - exp(16*exp(x) - 48)*(10218366630*x*log(x)^16 - 22
03961430*log(x)^18 - 3719430*x^8*log(x)^2 + 94225560*x^7*log(x)^4 - 923410488*x^6*log(x)^6 + 4551094548*x^5*lo
g(x)^8 - 12641929300*x^4*log(x)^10 + 20686793400*x^3*log(x)^12 - 19777483800*x^2*log(x)^14 + 24310*x^9) + exp(
26*exp(x) - 78)*(18156204*log(x)^8 - 15405264*x*log(x)^6 - 257040*x^3*log(x)^2 + 3727080*x^2*log(x)^4 + 2380*x
^4) + exp(5*exp(x) - 15)*(4080*x^14*log(x) - 3423392*x*log(x)^27 + 278256*log(x)^29 - 133280*x^13*log(x)^3 + 1
559376*x^12*log(x)^5 - 9801792*x^11*log(x)^7 + 38934896*x^10*log(x)^9 - 106186080*x^9*log(x)^11 + 208288080*x^
8*log(x)^13 - 301521792*x^7*log(x)^15 + 325909584*x^6*log(x)^17 - 263014752*x^5*log(x)^19 + 156556400*x^4*log(
x)^21 - 66830400*x^3*log(x)^23 + 19380816*x^2*log(x)^25) + exp(30*exp(x) - 90)*(46376*log(x)^4 - 8432*x*log(x)
^2 + 136*x^2) + exp(17*exp(x) - 51)*(437580*x^8*log(x) - 9617286240*x*log(x)^15 + 2333606220*log(x)^17 - 22170
720*x^7*log(x)^3 + 325909584*x^6*log(x)^5 - 2141691552*x^5*log(x)^7 + 7436429000*x^4*log(x)^9 - 14602442400*x^
3*log(x)^11 + 16287339600*x^2*log(x)^13) - x^17 - exp(3*exp(x) - 9)*(544*x^15*log(x) + 84320*x*log(x)^29 - 598
4*log(x)^31 - 13600*x^14*log(x)^3 + 133280*x^13*log(x)^5 - 742560*x^12*log(x)^7 + 2722720*x^11*log(x)^9 - 7079
072*x^10*log(x)^11 + 13613600*x^9*log(x)^13 - 19836960*x^8*log(x)^15 + 22170720*x^7*log(x)^17 - 19059040*x^6*l
og(x)^19 + 12524512*x^5*log(x)^21 - 6188000*x^4*log(x)^23 + 2227680*x^3*log(x)^25 - 552160*x^2*log(x)^27) + ex
p(18*exp(x) - 54)*(2203961430*log(x)^16 - 8014405200*x*log(x)^14 - 3695120*x^7*log(x)^2 + 90530440*x^6*log(x)^
4 - 832880048*x^5*log(x)^6 + 3718214500*x^4*log(x)^8 - 8923714800*x^3*log(x)^10 + 11763078600*x^2*log(x)^12 +
24310*x^8) - exp(20*exp(x) - 60)*(3838478280*x*log(x)^12 - 1391975640*log(x)^14 - 2858856*x^6*log(x)^2 + 65753
688*x^5*log(x)^4 - 547947400*x^4*log(x)^6 + 2113511400*x^3*log(x)^8 - 4086122040*x^2*log(x)^10 + 19448*x^7) +
exp(21*exp(x) - 63)*(272272*x^6*log(x) - 2193416160*x*log(x)^11 + 927983760*log(x)^13 - 12524512*x^5*log(x)^3
+ 156556400*x^4*log(x)^5 - 805147200*x^3*log(x)^7 + 1945772400*x^2*log(x)^9) + exp(exp(x) - 3)*(34*x^16*log(x)
 - 544*x*log(x)^31 + 34*log(x)^33 - 544*x^15*log(x)^3 + 4080*x^14*log(x)^5 - 19040*x^13*log(x)^7 + 61880*x^12*
log(x)^9 - 148512*x^11*log(x)^11 + 272272*x^10*log(x)^13 - 388960*x^9*log(x)^15 + 437580*x^8*log(x)^17 - 38896
0*x^7*log(x)^19 + 272272*x^6*log(x)^21 - 148512*x^5*log(x)^23 + 61880*x^4*log(x)^25 - 19040*x^3*log(x)^27 + 40
80*x^2*log(x)^29) + exp(13*exp(x) - 39)*(272272*x^10*log(x) - 5905351200*x*log(x)^19 + 927983760*log(x)^21 - 1
3613600*x^9*log(x)^3 + 208288080*x^8*log(x)^5 - 1507608960*x^7*log(x)^7 + 6156069920*x^6*log(x)^9 - 1544613907
2*x^5*log(x)^11 + 24753428000*x^4*log(x)^13 - 25460668800*x^3*log(x)^15 + 16287339600*x^2*log(x)^17) + exp(14*
exp(x) - 42)*(1391975640*log(x)^20 - 8014405200*x*log(x)^18 - 2917200*x^9*log(x)^2 + 74388600*x^8*log(x)^4 - 7
53804480*x^7*log(x)^6 + 3957473520*x^6*log(x)^8 - 12136252128*x^5*log(x)^10 + 22985326000*x^4*log(x)^12 - 2727
9288000*x^3*log(x)^14 + 19777483800*x^2*log(x)^16 + 19448*x^10)),x)

[Out]

\text{Hanged}

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-64*exp(x)*x+2)*exp(exp(x)-3)**2+((-64*exp(x)*x+4)*ln(x)-64)*exp(exp(x)-3)+2*ln(x)**2-64*ln(x)+30*
x)/(-17*x*ln(x)**32+136*x**2*ln(x)**30-680*x**3*ln(x)**28+2380*x**4*ln(x)**26-6188*x**5*ln(x)**24+12376*x**6*l
n(x)**22-19448*x**7*ln(x)**20+24310*x**8*ln(x)**18-24310*x**9*ln(x)**16+19448*x**10*ln(x)**14-12376*x**11*ln(x
)**12+6188*x**12*ln(x)**10-2380*x**13*ln(x)**8+680*x**14*ln(x)**6-136*x**15*ln(x)**4+17*x**16*ln(x)**2+34*ln(x
)*exp(exp(x)-3)**33-x**17+ln(x)**34+exp(exp(x)-3)**34+(2333606220*ln(x)**17-9617286240*x*ln(x)**15+16287339600
*x**2*ln(x)**13-14602442400*x**3*ln(x)**11+7436429000*x**4*ln(x)**9-2141691552*x**5*ln(x)**7+325909584*x**6*ln
(x)**5-22170720*x**7*ln(x)**3+437580*x**8*ln(x))*exp(exp(x)-3)**17+(2203961430*ln(x)**18-10218366630*x*ln(x)**
16+19777483800*x**2*ln(x)**14-20686793400*x**3*ln(x)**12+12641929300*x**4*ln(x)**10-4551094548*x**5*ln(x)**8+9
23410488*x**6*ln(x)**6-94225560*x**7*ln(x)**4+3719430*x**8*ln(x)**2-24310*x**9)*exp(exp(x)-3)**16+(1855967520*
ln(x)**19-9617286240*x*ln(x)**17+21095982720*x**2*ln(x)**15-25460668800*x**3*ln(x)**13+18388260800*x**4*ln(x)*
*11-8090834752*x**5*ln(x)**9+2110652544*x**6*ln(x)**7-301521792*x**7*ln(x)**5+19836960*x**8*ln(x)**3-388960*x*
*9*ln(x))*exp(exp(x)-3)**15+(1391975640*ln(x)**20-8014405200*x*ln(x)**18+19777483800*x**2*ln(x)**16-2727928800
0*x**3*ln(x)**14+22985326000*x**4*ln(x)**12-12136252128*x**5*ln(x)**10+3957473520*x**6*ln(x)**8-753804480*x**7
*ln(x)**6+74388600*x**8*ln(x)**4-2917200*x**9*ln(x)**2+19448*x**10)*exp(exp(x)-3)**14+(927983760*ln(x)**21-590
5351200*x*ln(x)**19+16287339600*x**2*ln(x)**17-25460668800*x**3*ln(x)**15+24753428000*x**4*ln(x)**13-154461390
72*x**5*ln(x)**11+6156069920*x**6*ln(x)**9-1507608960*x**7*ln(x)**7+208288080*x**8*ln(x)**5-13613600*x**9*ln(x
)**3+272272*x**10*ln(x))*exp(exp(x)-3)**13+(548354040*ln(x)**22-3838478280*x*ln(x)**20+11763078600*x**2*ln(x)*
*18-20686793400*x**3*ln(x)**16+22985326000*x**4*ln(x)**14-16733317328*x**5*ln(x)**12+8002890896*x**6*ln(x)**10
-2449864560*x**7*ln(x)**8+451290840*x**8*ln(x)**6-44244200*x**9*ln(x)**4+1769768*x**10*ln(x)**2-12376*x**11)*e
xp(exp(x)-3)**12+(286097760*ln(x)**23-2193416160*x*ln(x)**21+7429312800*x**2*ln(x)**19-14602442400*x**3*ln(x)*
*17+18388260800*x**4*ln(x)**15-15446139072*x**5*ln(x)**13+8730426432*x**6*ln(x)**11-3266486080*x**7*ln(x)**9+7
73641440*x**8*ln(x)**7-106186080*x**9*ln(x)**5+7079072*x**10*ln(x)**3-148512*x**11*ln(x))*exp(exp(x)-3)**11+(1
31128140*ln(x)**24-1096708080*x*ln(x)**22+4086122040*x**2*ln(x)**20-8923714800*x**3*ln(x)**18+12641929300*x**4
*ln(x)**16-12136252128*x**5*ln(x)**14+8002890896*x**6*ln(x)**12-3593134688*x**7*ln(x)**10+1063756980*x**8*ln(x
)**8-194674480*x**9*ln(x)**6+19467448*x**10*ln(x)**4-816816*x**11*ln(x)**2+6188*x**12)*exp(exp(x)-3)**10+(5245
1256*ln(x)**25-476829600*x*ln(x)**23+1945772400*x**2*ln(x)**21-4696692000*x**3*ln(x)**19+7436429000*x**4*ln(x)
**17-8090834752*x**5*ln(x)**15+6156069920*x**6*ln(x)**13-3266486080*x**7*ln(x)**11+1181952200*x**8*ln(x)**9-27
8106400*x**9*ln(x)**7+38934896*x**10*ln(x)**5-2722720*x**11*ln(x)**3+61880*x**12*ln(x))*exp(exp(x)-3)**9+(1815
6204*ln(x)**26-178811100*x*ln(x)**24+795997800*x**2*ln(x)**22-2113511400*x**3*ln(x)**20+3718214500*x**4*ln(x)*
*18-4551094548*x**5*ln(x)**16+3957473520*x**6*ln(x)**14-2449864560*x**7*ln(x)**12+1063756980*x**8*ln(x)**10-31
2869700*x**9*ln(x)**8+58402344*x**10*ln(x)**6-6126120*x**11*ln(x)**4+278460*x**12*ln(x)**2-2380*x**13)*exp(exp
(x)-3)**8+(5379616*ln(x)**27-57219552*x*ln(x)**25+276868800*x**2*ln(x)**23-805147200*x**3*ln(x)**21+1565564000
*x**4*ln(x)**19-2141691552*x**5*ln(x)**17+2110652544*x**6*ln(x)**15-1507608960*x**7*ln(x)**13+773641440*x**8*l
n(x)**11-278106400*x**9*ln(x)**9+66745536*x**10*ln(x)**7-9801792*x**11*ln(x)**5+742560*x**12*ln(x)**3-19040*x*
*13*ln(x))*exp(exp(x)-3)**7+(1344904*ln(x)**28-15405264*x*ln(x)**26+80753400*x**2*ln(x)**24-256183200*x**3*ln(
x)**22+547947400*x**4*ln(x)**20-832880048*x**5*ln(x)**18+923410488*x**6*ln(x)**16-753804480*x**7*ln(x)**14+451
290840*x**8*ln(x)**12-194674480*x**9*ln(x)**10+58402344*x**10*ln(x)**8-11435424*x**11*ln(x)**6+1299480*x**12*l
n(x)**4-66640*x**13*ln(x)**2+680*x**14)*exp(exp(x)-3)**6+(278256*ln(x)**29-3423392*x*ln(x)**27+19380816*x**2*l
n(x)**25-66830400*x**3*ln(x)**23+156556400*x**4*ln(x)**21-263014752*x**5*ln(x)**19+325909584*x**6*ln(x)**17-30
1521792*x**7*ln(x)**15+208288080*x**8*ln(x)**13-106186080*x**9*ln(x)**11+38934896*x**10*ln(x)**9-9801792*x**11
*ln(x)**7+1559376*x**12*ln(x)**5-133280*x**13*ln(x)**3+4080*x**14*ln(x))*exp(exp(x)-3)**5+(46376*ln(x)**30-611
320*x*ln(x)**28+3727080*x**2*ln(x)**26-13923000*x**3*ln(x)**24+35581000*x**4*ln(x)**22-65753688*x**5*ln(x)**20
+90530440*x**6*ln(x)**18-94225560*x**7*ln(x)**16+74388600*x**8*ln(x)**14-44244200*x**9*ln(x)**12+19467448*x**1
0*ln(x)**10-6126120*x**11*ln(x)**8+1299480*x**12*ln(x)**6-166600*x**13*ln(x)**4+10200*x**14*ln(x)**2-136*x**15
)*exp(exp(x)-3)**4+(5984*ln(x)**31-84320*x*ln(x)**29+552160*x**2*ln(x)**27-2227680*x**3*ln(x)**25+6188000*x**4
*ln(x)**23-12524512*x**5*ln(x)**21+19059040*x**6*ln(x)**19-22170720*x**7*ln(x)**17+19836960*x**8*ln(x)**15-136
13600*x**9*ln(x)**13+7079072*x**10*ln(x)**11-2722720*x**11*ln(x)**9+742560*x**12*ln(x)**7-133280*x**13*ln(x)**
5+13600*x**14*ln(x)**3-544*x**15*ln(x))*exp(exp(x)-3)**3+(561*ln(x)**32-8432*x*ln(x)**30+59160*x**2*ln(x)**28-
257040*x**3*ln(x)**26+773500*x**4*ln(x)**24-1707888*x**5*ln(x)**22+2858856*x**6*ln(x)**20-3695120*x**7*ln(x)**
18+3719430*x**8*ln(x)**16-2917200*x**9*ln(x)**14+1769768*x**10*ln(x)**12-816816*x**11*ln(x)**10+278460*x**12*l
n(x)**8-66640*x**13*ln(x)**6+10200*x**14*ln(x)**4-816*x**15*ln(x)**2+17*x**16)*exp(exp(x)-3)**2+(34*ln(x)**33-
544*x*ln(x)**31+4080*x**2*ln(x)**29-19040*x**3*ln(x)**27+61880*x**4*ln(x)**25-148512*x**5*ln(x)**23+272272*x**
6*ln(x)**21-388960*x**7*ln(x)**19+437580*x**8*ln(x)**17-388960*x**9*ln(x)**15+272272*x**10*ln(x)**13-148512*x*
*11*ln(x)**11+61880*x**12*ln(x)**9-19040*x**13*ln(x)**7+4080*x**14*ln(x)**5-544*x**15*ln(x)**3+34*x**16*ln(x))
*exp(exp(x)-3)+(561*ln(x)**2-17*x)*exp(exp(x)-3)**32+(5984*ln(x)**3-544*x*ln(x))*exp(exp(x)-3)**31+(46376*ln(x
)**4-8432*x*ln(x)**2+136*x**2)*exp(exp(x)-3)**30+(278256*ln(x)**5-84320*x*ln(x)**3+4080*x**2*ln(x))*exp(exp(x)
-3)**29+(1344904*ln(x)**6-611320*x*ln(x)**4+59160*x**2*ln(x)**2-680*x**3)*exp(exp(x)-3)**28+(5379616*ln(x)**7-
3423392*x*ln(x)**5+552160*x**2*ln(x)**3-19040*x**3*ln(x))*exp(exp(x)-3)**27+(18156204*ln(x)**8-15405264*x*ln(x
)**6+3727080*x**2*ln(x)**4-257040*x**3*ln(x)**2+2380*x**4)*exp(exp(x)-3)**26+(52451256*ln(x)**9-57219552*x*ln(
x)**7+19380816*x**2*ln(x)**5-2227680*x**3*ln(x)**3+61880*x**4*ln(x))*exp(exp(x)-3)**25+(131128140*ln(x)**10-17
8811100*x*ln(x)**8+80753400*x**2*ln(x)**6-13923000*x**3*ln(x)**4+773500*x**4*ln(x)**2-6188*x**5)*exp(exp(x)-3)
**24+(286097760*ln(x)**11-476829600*x*ln(x)**9+276868800*x**2*ln(x)**7-66830400*x**3*ln(x)**5+6188000*x**4*ln(
x)**3-148512*x**5*ln(x))*exp(exp(x)-3)**23+(548354040*ln(x)**12-1096708080*x*ln(x)**10+795997800*x**2*ln(x)**8
-256183200*x**3*ln(x)**6+35581000*x**4*ln(x)**4-1707888*x**5*ln(x)**2+12376*x**6)*exp(exp(x)-3)**22+(927983760
*ln(x)**13-2193416160*x*ln(x)**11+1945772400*x**2*ln(x)**9-805147200*x**3*ln(x)**7+156556400*x**4*ln(x)**5-125
24512*x**5*ln(x)**3+272272*x**6*ln(x))*exp(exp(x)-3)**21+(1391975640*ln(x)**14-3838478280*x*ln(x)**12+40861220
40*x**2*ln(x)**10-2113511400*x**3*ln(x)**8+547947400*x**4*ln(x)**6-65753688*x**5*ln(x)**4+2858856*x**6*ln(x)**
2-19448*x**7)*exp(exp(x)-3)**20+(1855967520*ln(x)**15-5905351200*x*ln(x)**13+7429312800*x**2*ln(x)**11-4696692
000*x**3*ln(x)**9+1565564000*x**4*ln(x)**7-263014752*x**5*ln(x)**5+19059040*x**6*ln(x)**3-388960*x**7*ln(x))*e
xp(exp(x)-3)**19+(2203961430*ln(x)**16-8014405200*x*ln(x)**14+11763078600*x**2*ln(x)**12-8923714800*x**3*ln(x)
**10+3718214500*x**4*ln(x)**8-832880048*x**5*ln(x)**6+90530440*x**6*ln(x)**4-3695120*x**7*ln(x)**2+24310*x**8)
*exp(exp(x)-3)**18),x)

[Out]

Timed out

________________________________________________________________________________________